Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                        C. BormannRequest for Comments: 7228                       Universitaet Bremen TZICategory: Informational                                         M. ErsueISSN: 2070-1721                             Nokia Solutions and Networks                                                              A. Keranen                                                                Ericsson                                                                May 2014Terminology for Constrained-Node NetworksAbstract   The Internet Protocol Suite is increasingly used on small devices   with severe constraints on power, memory, and processing resources,   creating constrained-node networks.  This document provides a number   of basic terms that have been useful in the standardization work for   constrained-node networks.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7228.Bormann, et al.               Informational                     [Page 1]

RFC 7228                     CNN Terminology                    May 2014Copyright Notice   Copyright (c) 2014 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1. Introduction ....................................................32. Core Terminology ................................................42.1. Constrained Nodes ..........................................42.2. Constrained Networks .......................................52.2.1. Challenged Networks .................................62.3. Constrained-Node Networks ..................................72.3.1. LLN .................................................72.3.2. LoWPAN, 6LoWPAN .....................................83. Classes of Constrained Devices ..................................84. Power Terminology ..............................................104.1. Scaling Properties ........................................104.2. Classes of Energy Limitation ..............................114.3. Strategies for Using Power for Communication ..............125. Security Considerations ........................................146. Acknowledgements ...............................................147. Informative References .........................................14Bormann, et al.               Informational                     [Page 2]

RFC 7228                     CNN Terminology                    May 20141.  Introduction   Small devices with limited CPU, memory, and power resources, so-   called "constrained devices" (often used as sensors/actuators, smart   objects, or smart devices) can form a network, becoming "constrained   nodes" in that network.  Such a network may itself exhibit   constraints, e.g., with unreliable or lossy channels, limited and   unpredictable bandwidth, and a highly dynamic topology.   Constrained devices might be in charge of gathering information in   diverse settings, including natural ecosystems, buildings, and   factories, and sending the information to one or more server   stations.  They might also act on information, by performing some   physical action, including displaying it.  Constrained devices may   work under severe resource constraints such as limited battery and   computing power, little memory, and insufficient wireless bandwidth   and ability to communicate; these constraints often exacerbate each   other.  Other entities on the network, e.g., a base station or   controlling server, might have more computational and communication   resources and could support the interaction between the constrained   devices and applications in more traditional networks.   Today, diverse sizes of constrained devices with different resources   and capabilities are becoming connected.  Mobile personal gadgets,   building-automation devices, cellular phones, machine-to-machine   (M2M) devices, and other devices benefit from interacting with other   "things" nearby or somewhere in the Internet.  With this, the   Internet of Things (IoT) becomes a reality, built up out of uniquely   identifiable and addressable objects (things).  Over the next decade,   this could grow to large numbers [FIFTY-BILLION] of Internet-   connected constrained devices, greatly increasing the Internet's size   and scope.   The present document provides a number of basic terms that have been   useful in the standardization work for constrained environments.  The   intention is not to exhaustively cover the field but to make sure a   few core terms are used consistently between different groups   cooperating in this space.   In this document, the term "byte" is used in its now customary sense   as a synonym for "octet".  Where sizes of semiconductor memory are   given, the prefix "kibi" (1024) is combined with "byte" to   "kibibyte", abbreviated "KiB", for 1024 bytes [ISQ-13].Bormann, et al.               Informational                     [Page 3]

RFC 7228                     CNN Terminology                    May 2014   In computing, the term "power" is often used for the concept of   "computing power" or "processing power", as in CPU performance.  In   this document, the term stands for electrical power unless explicitly   stated otherwise.  "Mains-powered" is used as a shorthand for being   permanently connected to a stable electrical power grid.2.  Core Terminology   There are two important aspects to _scaling_ within the Internet of   Things:   o  scaling up Internet technologies to a large number [FIFTY-BILLION]      of inexpensive nodes, while   o  scaling down the characteristics of each of these nodes and of the      networks being built out of them, to make this scaling up      economically and physically viable.   The need for scaling down the characteristics of nodes leads to   "constrained nodes".2.1.  Constrained Nodes   The term "constrained node" is best defined by contrasting the   characteristics of a constrained node with certain widely held   expectations on more familiar Internet nodes:   Constrained Node:  A node where some of the characteristics that are      otherwise pretty much taken for granted for Internet nodes at the      time of writing are not attainable, often due to cost constraints      and/or physical constraints on characteristics such as size,      weight, and available power and energy.  The tight limits on      power, memory, and processing resources lead to hard upper bounds      on state, code space, and processing cycles, making optimization      of energy and network bandwidth usage a dominating consideration      in all design requirements.  Also, some layer-2 services such as      full connectivity and broadcast/multicast may be lacking.   While this is not a rigorous definition, it is grounded in the state   of the art and clearly sets apart constrained nodes from server   systems, desktop or laptop computers, powerful mobile devices such as   smartphones, etc.  There may be many design considerations that lead   to these constraints, including cost, size, weight, and other scaling   factors.Bormann, et al.               Informational                     [Page 4]

RFC 7228                     CNN Terminology                    May 2014   (An alternative term, when the properties as a network node are not   in focus, is "constrained device".)   There are multiple facets to the constraints on nodes, often applying   in combination, for example:   o  constraints on the maximum code complexity (ROM/Flash),   o  constraints on the size of state and buffers (RAM),   o  constraints on the amount of computation feasible in a period of      time ("processing power"),   o  constraints on the available power, and   o  constraints on user interface and accessibility in deployment      (ability to set keys, update software, etc.).Section 3 defines a small number of interesting classes ("class-N"   for N = 0, 1, 2) of constrained nodes focusing on relevant   combinations of the first two constraints.  With respect to available   power, [RFC6606] distinguishes "power-affluent" nodes (mains-powered   or regularly recharged) from "power-constrained nodes" that draw   their power from primary batteries or by using energy harvesting;   more detailed power terminology is given inSection 4.   The use of constrained nodes in networks often also leads to   constraints on the networks themselves.  However, there may also be   constraints on networks that are largely independent from those of   the nodes.  We therefore distinguish "constrained networks" from   "constrained-node networks".2.2.  Constrained Networks   We define "constrained network" in a similar way:   Constrained Network:  A network where some of the characteristics      pretty much taken for granted with link layers in common use in      the Internet at the time of writing are not attainable.   Constraints may include:   o  low achievable bitrate/throughput (including limits on duty      cycle),   o  high packet loss and high variability of packet loss (delivery      rate),Bormann, et al.               Informational                     [Page 5]

RFC 7228                     CNN Terminology                    May 2014   o  highly asymmetric link characteristics,   o  severe penalties for using larger packets (e.g., high packet loss      due to link-layer fragmentation),   o  limits on reachability over time (a substantial number of devices      may power off at any point in time but periodically "wake up" and      can communicate for brief periods of time), and   o  lack of (or severe constraints on) advanced services such as IP      multicast.   More generally, we speak of constrained networks whenever at least   some of the nodes involved in the network exhibit these   characteristics.   Again, there may be several reasons for this:   o  cost constraints on the network,   o  constraints posed by the nodes (for constrained-node networks),   o  physical constraints (e.g., power constraints, environmental      constraints, media constraints such as underwater operation,      limited spectrum for very high density, electromagnetic      compatibility),   o  regulatory constraints, such as very limited spectrum availability      (including limits on effective radiated power and duty cycle) or      explosion safety, and   o  technology constraints, such as older and lower-speed technologies      that are still operational and may need to stay in use for some      more time.2.2.1.  Challenged Networks   A constrained network is not necessarily a "challenged network"   [FALL]:   Challenged Network:  A network that has serious trouble maintaining      what an application would today expect of the end-to-end IP model,      e.g., by:      *  not being able to offer end-to-end IP connectivity at all,      *  exhibiting serious interruptions in end-to-end IP connectivity,         orBormann, et al.               Informational                     [Page 6]

RFC 7228                     CNN Terminology                    May 2014      *  exhibiting delay well beyond the Maximum Segment Lifetime (MSL)         defined by TCP [RFC0793].   All challenged networks are constrained networks in some sense, but   not all constrained networks are challenged networks.  There is no   well-defined boundary between the two, though.  Delay-Tolerant   Networking (DTN) has been designed to cope with challenged networks   [RFC4838].2.3.  Constrained-Node Networks   Constrained-Node Network:  A network whose characteristics are      influenced by being composed of a significant portion of      constrained nodes.   A constrained-node network always is a constrained network because of   the network constraints stemming from the node constraints, but it   may also have other constraints that already make it a constrained   network.   The rest of this subsection introduces two additional terms that are   in active use in the area of constrained-node networks, without an   intent to define them: LLN and (6)LoWPAN.2.3.1.  LLN   A related term that has been used to describe the focus of the IETF   ROLL working group is "Low-Power and Lossy Network (LLN)".  The ROLL   (Routing Over Low-Power and Lossy) terminology document [RFC7102]   defines LLNs as follows:      LLN: Low-Power and Lossy Network.  Typically composed of many      embedded devices with limited power, memory, and processing      resources interconnected by a variety of links, such as IEEE      802.15.4 or low-power Wi-Fi.  There is a wide scope of application      areas for LLNs, including industrial monitoring, building      automation (heating, ventilation, and air conditioning (HVAC),      lighting, access control, fire), connected home, health care,      environmental monitoring, urban sensor networks, energy      management, assets tracking, and refrigeration.   Beyond that, LLNs often exhibit considerable loss at the physical   layer, with significant variability of the delivery rate, and some   short-term unreliability, coupled with some medium-term stability   that makes it worthwhile to both construct directed acyclic graphs   that are medium-term stable for routing and do measurements on the   edges such as Expected Transmission Count (ETX) [RFC6551].  Not all   LLNs comprise low-power nodes [RPL-DEPLOYMENT].Bormann, et al.               Informational                     [Page 7]

RFC 7228                     CNN Terminology                    May 2014   LLNs typically are composed of constrained nodes; this leads to the   design of operation modes such as the "non-storing mode" defined by   RPL (the IPv6 Routing Protocol for Low-Power and Lossy Networks   [RFC6550]).  So, in the terminology of the present document, an LLN   is a constrained-node network with certain network characteristics,   which include constraints on the network as well.2.3.2.  LoWPAN, 6LoWPAN   One interesting class of a constrained network often used as a   constrained-node network is "LoWPAN" [RFC4919], a term inspired from   the name of an IEEE 802.15.4 working group (low-rate wireless   personal area networks (LR-WPANs)).  The expansion of the LoWPAN   acronym, "Low-Power Wireless Personal Area Network", contains a hard-   to-justify "Personal" that is due to the history of task group naming   in IEEE 802 more than due to an orientation of LoWPANs around a   single person.  Actually, LoWPANs have been suggested for urban   monitoring, control of large buildings, and industrial control   applications, so the "Personal" can only be considered a vestige.   Occasionally, the term is read as "Low-Power Wireless Area Networks"   [WEI].  Originally focused on IEEE 802.15.4, "LoWPAN" (or when used   for IPv6, "6LoWPAN") also refers to networks built from similarly   constrained link-layer technologies [V6-BTLE] [V6-DECT-ULE]   [V6-G9959].3.  Classes of Constrained Devices   Despite the overwhelming variety of Internet-connected devices that   can be envisioned, it may be worthwhile to have some succinct   terminology for different classes of constrained devices.  In this   document, the class designations in Table 1 may be used as rough   indications of device capabilities:     +-------------+-----------------------+-------------------------+     | Name        | data size (e.g., RAM) | code size (e.g., Flash) |     +-------------+-----------------------+-------------------------+     | Class 0, C0 | << 10 KiB             | << 100 KiB              |     |             |                       |                         |     | Class 1, C1 | ~ 10 KiB              | ~ 100 KiB               |     |             |                       |                         |     | Class 2, C2 | ~ 50 KiB              | ~ 250 KiB               |     +-------------+-----------------------+-------------------------+        Table 1: Classes of Constrained Devices (KiB = 1024 bytes)   As of the writing of this document, these characteristics correspond   to distinguishable clusters of commercially available chips and   design cores for constrained devices.  While it is expected that theBormann, et al.               Informational                     [Page 8]

RFC 7228                     CNN Terminology                    May 2014   boundaries of these classes will move over time, Moore's law tends to   be less effective in the embedded space than in personal computing   devices: gains made available by increases in transistor count and   density are more likely to be invested in reductions of cost and   power requirements than into continual increases in computing power.   Class 0 devices are very constrained sensor-like motes.  They are so   severely constrained in memory and processing capabilities that most   likely they will not have the resources required to communicate   directly with the Internet in a secure manner (rare heroic, narrowly   targeted implementation efforts notwithstanding).  Class 0 devices   will participate in Internet communications with the help of larger   devices acting as proxies, gateways, or servers.  Class 0 devices   generally cannot be secured or managed comprehensively in the   traditional sense.  They will most likely be preconfigured (and will   be reconfigured rarely, if at all) with a very small data set.  For   management purposes, they could answer keepalive signals and send on/   off or basic health indications.   Class 1 devices are quite constrained in code space and processing   capabilities, such that they cannot easily talk to other Internet   nodes employing a full protocol stack such as using HTTP, Transport   Layer Security (TLS), and related security protocols and XML-based   data representations.  However, they are capable enough to use a   protocol stack specifically designed for constrained nodes (such as   the Constrained Application Protocol (CoAP) over UDP [COAP]) and   participate in meaningful conversations without the help of a gateway   node.  In particular, they can provide support for the security   functions required on a large network.  Therefore, they can be   integrated as fully developed peers into an IP network, but they need   to be parsimonious with state memory, code space, and often power   expenditure for protocol and application usage.   Class 2 devices are less constrained and fundamentally capable of   supporting most of the same protocol stacks as used on notebooks or   servers.  However, even these devices can benefit from lightweight   and energy-efficient protocols and from consuming less bandwidth.   Furthermore, using fewer resources for networking leaves more   resources available to applications.  Thus, using the protocol stacks   defined for more constrained devices on Class 2 devices might reduce   development costs and increase the interoperability.   Constrained devices with capabilities significantly beyond Class 2   devices exist.  They are less demanding from a standards development   point of view as they can largely use existing protocols unchanged.   The present document therefore does not make any attempt to define   classes beyond Class 2.  These devices can still be constrained by a   limited energy supply.Bormann, et al.               Informational                     [Page 9]

RFC 7228                     CNN Terminology                    May 2014   With respect to examining the capabilities of constrained nodes,   particularly for Class 1 devices, it is important to understand what   type of applications they are able to run and which protocol   mechanisms would be most suitable.  Because of memory and other   limitations, each specific Class 1 device might be able to support   only a few selected functions needed for its intended operation.  In   other words, the set of functions that can actually be supported is   not static per device type: devices with similar constraints might   choose to support different functions.  Even though Class 2 devices   have some more functionality available and may be able to provide a   more complete set of functions, they still need to be assessed for   the type of applications they will be running and the protocol   functions they would need.  To be able to derive any requirements,   the use cases and the involvement of the devices in the application   and the operational scenario need to be analyzed.  Use cases may   combine constrained devices of multiple classes as well as more   traditional Internet nodes.4.  Power Terminology   Devices not only differ in their computing capabilities but also in   available power and/or energy.  While it is harder to find   recognizable clusters in this space, it is still useful to introduce   some common terminology.4.1.  Scaling Properties   The power and/or energy available to a device may vastly differ, from   kilowatts to microwatts, from essentially unlimited to hundreds of   microjoules.   Instead of defining classes or clusters, we simply state, using the   International System of Units (SI units), an approximate value for   one or both of the quantities listed in Table 2:   +------+--------------------------------------------------+---------+   | Name | Definition                                       | SI Unit |   +------+--------------------------------------------------+---------+   | Ps   | Sustainable average power available for the      | W       |   |      | device over the time it is functioning           | (Watt)  |   |      |                                                  |         |   | Et   | Total electrical energy available before the     | J       |   |      | energy source is exhausted                       | (Joule) |   +------+--------------------------------------------------+---------+             Table 2: Quantities Relevant to Power and EnergyBormann, et al.               Informational                    [Page 10]

RFC 7228                     CNN Terminology                    May 2014   The value of Et may need to be interpreted in conjunction with an   indication over which period of time the value is given; seeSection 4.2.   Some devices enter a "low-power" mode before the energy available in   a period is exhausted or even have multiple such steps on the way to   exhaustion.  For these devices, Ps would need to be given for each of   the modes/steps.4.2.  Classes of Energy Limitation   As discussed above, some devices are limited in available energy as   opposed to (or in addition to) being limited in available power.   Where no relevant limitations exist with respect to energy, the   device is classified as E9.  The energy limitation may be in total   energy available in the usable lifetime of the device (e.g., a device   that is discarded when its non-replaceable primary battery is   exhausted), classified as E2.  Where the relevant limitation is for a   specific period, the device is classified as E1, e.g., a solar-   powered device with a limited amount of energy available for the   night, a device that is manually connected to a charger and has a   period of time between recharges, or a device with a periodic   (primary) battery replacement interval.  Finally, there may be a   limited amount of energy available for a specific event, e.g., for a   button press in an energy-harvesting light switch; such devices are   classified as E0.  Note that, in a sense, many E1 devices are also   E2, as the rechargeable battery has a limited number of useful   recharging cycles.   Table 3 provides a summary of the classifications described above.Bormann, et al.               Informational                    [Page 11]

RFC 7228                     CNN Terminology                    May 2014   +------+------------------------------+-----------------------------+   | Name | Type of energy limitation    | Example Power Source        |   +------+------------------------------+-----------------------------+   | E0   | Event energy-limited         | Event-based harvesting      |   |      |                              |                             |   | E1   | Period energy-limited        | Battery that is             |   |      |                              | periodically recharged or   |   |      |                              | replaced                    |   |      |                              |                             |   | E2   | Lifetime energy-limited      | Non-replaceable primary     |   |      |                              | battery                     |   |      |                              |                             |   | E9   | No direct quantitative       | Mains-powered               |   |      | limitations to available     |                             |   |      | energy                       |                             |   +------+------------------------------+-----------------------------+                   Table 3: Classes of Energy Limitation4.3.  Strategies for Using Power for Communication   Especially when wireless transmission is used, the radio often   consumes a big portion of the total energy consumed by the device.   Design parameters, such as the available spectrum, the desired range,   and the bitrate aimed for, influence the power consumed during   transmission and reception; the duration of transmission and   reception (including potential reception) influence the total energy   consumption.   Different strategies for power usage and network attachment may be   used, based on the type of the energy source (e.g., battery or mains-   powered) and the frequency with which a device needs to communicate.   The general strategies for power usage can be described as follows:   Always-on:  This strategy is most applicable if there is no reason      for extreme measures for power saving.  The device can stay on in      the usual manner all the time.  It may be useful to employ power-      friendly hardware or limit the number of wireless transmissions,      CPU speeds, and other aspects for general power-saving and cooling      needs, but the device can be connected to the network all the      time.   Normally-off:  Under this strategy, the device sleeps such long      periods at a time that once it wakes up, it makes sense for it to      not pretend that it has been connected to the network duringBormann, et al.               Informational                    [Page 12]

RFC 7228                     CNN Terminology                    May 2014      sleep: the device reattaches to the network as it is woken up.      The main optimization goal is to minimize the effort during the      reattachment process and any resulting application communications.      If the device sleeps for long periods of time and needs to      communicate infrequently, the relative increase in energy      expenditure during reattachment may be acceptable.   Low-power:  This strategy is most applicable to devices that need to      operate on a very small amount of power but still need to be able      to communicate on a relatively frequent basis.  This implies that      extremely low-power solutions need to be used for the hardware,      chosen link-layer mechanisms, and so on.  Typically, given the      small amount of time between transmissions, despite their sleep      state, these devices retain some form of attachment to the      network.  Techniques used for minimizing power usage for the      network communications include minimizing any work from re-      establishing communications after waking up and tuning the      frequency of communications (including "duty cycling", where      components are switched on and off in a regular cycle) and other      parameters appropriately.   Table 4 provides a summary of the strategies described above.   +------+--------------+---------------------------------------------+   | Name | Strategy     | Ability to communicate                      |   +------+--------------+---------------------------------------------+   | P0   | Normally-off | Reattach when required                      |   |      |              |                                             |   | P1   | Low-power    | Appears connected, perhaps with high        |   |      |              | latency                                     |   |      |              |                                             |   | P9   | Always-on    | Always connected                            |   +------+--------------+---------------------------------------------+           Table 4: Strategies of Using Power for Communication   Note that the discussion above is at the device level; similar   considerations can apply at the communications-interface level.  This   document does not define terminology for the latter.   A term often used to describe power-saving approaches is "duty-   cycling".  This describes all forms of periodically switching off   some function, leaving it on only for a certain percentage of time   (the "duty cycle").Bormann, et al.               Informational                    [Page 13]

RFC 7228                     CNN Terminology                    May 2014   [RFC7102] only distinguishes two levels, defining a Non-Sleepy Node   as a node that always remains in a fully powered-on state (always   awake) where it has the capability to perform communication (P9) and   a Sleepy Node as a node that may sometimes go into a sleep mode (a   low-power state to conserve power) and temporarily suspend protocol   communication (P0); there is no explicit mention of P1.5.  Security Considerations   This document introduces common terminology that does not raise any   new security issues.  Security considerations arising from the   constraints discussed in this document need to be discussed in the   context of specific protocols.  For instance, Section 11.6 of [COAP],   "Constrained node considerations", discusses implications of specific   constraints on the security mechanisms employed.  [ROLL-SEC-THREATS]   provides a security threat analysis for the RPL routing protocol.   Implementation considerations for security protocols on constrained   nodes are discussed in [IKEV2-MINIMAL] and [TLS-MINIMAL].  A wider   view of security in constrained-node networks is provided in   [IOT-SECURITY].6.  Acknowledgements   Dominique Barthel and Peter van der Stok provided useful comments;   Charles Palmer provided a full editorial review.   Peter van der Stok insisted that we should include power terminology,   henceSection 4.  The text forSection 4.3 is mostly lifted from a   previous version of [COAP-CELLULAR] and has been adapted for this   document.7.  Informative References   [COAP]     Shelby, Z., Hartke, K., and C. Bormann, "Constrained              Application Protocol (CoAP)", Work in Progress, June 2013.   [COAP-CELLULAR]              Arkko, J., Eriksson, A., and A. Keranen, "Building Power-              Efficient CoAP Devices for Cellular Networks", Work in              Progress, February 2014.   [FALL]     Fall, K., "A Delay-Tolerant Network Architecture for              Challenged Internets", SIGCOMM 2003, 2003.Bormann, et al.               Informational                    [Page 14]

RFC 7228                     CNN Terminology                    May 2014   [FIFTY-BILLION]              Ericsson, "More Than 50 Billion Connected Devices",              Ericsson White Paper 284 23-3149 Uen, February 2011,              <http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf>.   [IKEV2-MINIMAL]              Kivinen, T.,"Minimal IKEv2", Work in Progress, October              2013.   [IOT-SECURITY]              Garcia-Morchon, O., Kumar, S., Keoh, S., Hummen, R., and              R. Struik, "Security Considerations in the IP-based              Internet of Things", Work in Progress, September 2013.   [ISQ-13]   International Electrotechnical Commission, "International              Standard -- Quantities and units -- Part 13: Information              science and technology", IEC 80000-13, March 2008.   [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,RFC793, September 1981.   [RFC4838]  Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,              R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant              Networking Architecture",RFC 4838, April 2007.   [RFC4919]  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6              over Low-Power Wireless Personal Area Networks (6LoWPANs):              Overview, Assumptions, Problem Statement, and Goals",RFC4919, August 2007.   [RFC6550]  Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R.,              Levis, P., Pister, K., Struik, R., Vasseur, JP., and R.              Alexander, "RPL: IPv6 Routing Protocol for Low-Power and              Lossy Networks",RFC 6550, March 2012.   [RFC6551]  Vasseur, JP., Kim, M., Pister, K., Dejean, N., and D.              Barthel, "Routing Metrics Used for Path Calculation in              Low-Power and Lossy Networks",RFC 6551, March 2012.   [RFC6606]  Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem              Statement and Requirements for IPv6 over Low-Power              Wireless Personal Area Network (6LoWPAN) Routing",RFC6606, May 2012.   [RFC7102]  Vasseur, JP., "Terms Used in Routing for Low-Power and              Lossy Networks",RFC 7102, January 2014.Bormann, et al.               Informational                    [Page 15]

RFC 7228                     CNN Terminology                    May 2014   [ROLL-SEC-THREATS]              Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A.,              and M. Richardson, "A Security Threat Analysis for Routing              Protocol for Low-power and lossy networks (RPL)", Work in              Progress, December 2013.   [RPL-DEPLOYMENT]              Vasseur, J., Ed., Hui, J., Ed., Dasgupta, S., and G. Yoon,              "RPL deployment experience in large scale networks", Work              in Progress, July 2012.   [TLS-MINIMAL]              Kumar, S., Keoh, S., and H. Tschofenig, "A Hitchhiker's              Guide to the (Datagram) Transport Layer Security Protocol              for Smart Objects and Constrained Node Networks", Work in              Progress, March 2014.   [V6-BTLE]  Nieminen, J., Ed., Savolainen, T., Ed., Isomaki, M.,              Patil, B., Shelby, Z., and C. Gomez, "Transmission of IPv6              Packets over BLUETOOTH Low Energy", Work in Progress, May              2014.   [V6-DECT-ULE]              Mariager, P., Ed., Petersen, J., and Z. Shelby,              "Transmission of IPv6 Packets over DECT Ultra Low Energy",              Work in Progress, July 2013.   [V6-G9959] Brandt, A. and J. Buron, "Transmission of IPv6 packets              over ITU-T G.9959 Networks", Work in Progress, May 2014.   [WEI]      Shelby, Z. and C. Bormann, "6LoWPAN: the Wireless Embedded              Internet", ISBN 9780470747995, 2009.Bormann, et al.               Informational                    [Page 16]

RFC 7228                     CNN Terminology                    May 2014Authors' Addresses   Carsten Bormann   Universitaet Bremen TZI   Postfach 330440   D-28359 Bremen   Germany   Phone: +49-421-218-63921   EMail: cabo@tzi.org   Mehmet Ersue   Nokia Solutions and Networks   St.-Martinstrasse 76   81541 Munich   Germany   Phone: +49 172 8432301   EMail: mehmet.ersue@nsn.com   Ari Keranen   Ericsson   Hirsalantie 11   02420 Jorvas   Finland   EMail: ari.keranen@ericsson.comBormann, et al.               Informational                    [Page 17]

[8]ページ先頭

©2009-2025 Movatter.jp