Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

Obsoleted by:6733 PROPOSED STANDARD
Updated by:5729,5719,6408Errata Exist
Network Working Group                                         P. CalhounRequest for Comments: 3588                               Airespace, Inc.Category: Standards Track                                    J. Loughney                                                                   Nokia                                                              E. Guttman                                                  Sun Microsystems, Inc.                                                                 G. Zorn                                                     Cisco Systems, Inc.                                                                J. Arkko                                                                Ericsson                                                          September 2003Diameter Base ProtocolStatus of this Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2003).  All Rights Reserved.Abstract   The Diameter base protocol is intended to provide an Authentication,   Authorization and Accounting (AAA) framework for applications such as   network access or IP mobility.  Diameter is also intended to work in   both local Authentication, Authorization & Accounting and roaming   situations.  This document specifies the message format, transport,   error reporting, accounting and security services to be used by all   Diameter applications.  The Diameter base application needs to be   supported by all Diameter implementations.Conventions Used In This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inBCP 14,RFC 2119   [KEYWORD].Calhoun, et al.             Standards Track                     [Page 1]

RFC 3588                Diameter Based Protocol           September 2003Table of Contents1.  Introduction.................................................61.1.   Diameter Protocol.....................................91.1.1.   Description of the Document Set..............101.2.   Approach to Extensibility.............................111.2.1.   Defining New AVP Values......................111.2.2.   Creating New AVPs............................111.2.3.   Creating New Authentication Applications.....111.2.4.   Creating New Accounting Applications.........121.2.5.   Application Authentication Procedures........141.3.   Terminology...........................................142.  Protocol Overview............................................182.1.   Transport.............................................202.1.1.   SCTP Guidelines..............................212.2.   Securing Diameter Messages............................212.3.   Diameter Application Compliance.......................212.4.   Application Identifiers...............................222.5.   Connections vs. Sessions..............................222.6.   Peer Table............................................232.7.   Realm-Based Routing Table.............................242.8.   Role of Diameter Agents...............................252.8.1.   Relay Agents.................................262.8.2.   Proxy Agents.................................272.8.3.   Redirect Agents..............................282.8.4.   Translation Agents...........................292.9.   End-to-End Security Framework.........................302.10.  Diameter Path Authorization...........................303.  Diameter Header..............................................323.1.   Command Codes.........................................353.2.   Command Code ABNF specification.......................363.3.   Diameter Command Naming Conventions...................384.  Diameter AVPs................................................384.1.   AVP Header............................................394.1.1.   Optional Header Elements.....................414.2.   Basic AVP Data Formats................................414.3.   Derived AVP Data Formats..............................424.4.   Grouped AVP Values....................................494.4.1.   Example AVP with a Grouped Data Type.........504.5.   Diameter Base Protocol AVPs...........................535.  Diameter Peers...............................................565.1.   Peer Connections......................................565.2.   Diameter Peer Discovery...............................565.3.   Capabilities Exchange.................................595.3.1.   Capabilities-Exchange-Request................605.3.2.   Capabilities-Exchange-Answer.................605.3.3.   Vendor-Id AVP................................615.3.4.   Firmware-Revision AVP........................61Calhoun, et al.             Standards Track                     [Page 2]

RFC 3588                Diameter Based Protocol           September 20035.3.5.   Host-IP-Address AVP..........................625.3.6.   Supported-Vendor-Id AVP......................625.3.7.   Product-Name AVP.............................625.4.   Disconnecting Peer Connections........................625.4.1.   Disconnect-Peer-Request......................635.4.2.   Disconnect-Peer-Answer.......................635.4.3.   Disconnect-Cause AVP.........................635.5.   Transport Failure Detection...........................645.5.1.   Device-Watchdog-Request......................645.5.2.   Device-Watchdog-Answer.......................645.5.3.   Transport Failure Algorithm..................655.5.4.   Failover and Failback Procedures.............655.6.   Peer State Machine....................................665.6.1.   Incoming connections.........................685.6.2.   Events.......................................695.6.3.   Actions......................................705.6.4.   The Election Process.........................716.  Diameter Message Processing..................................716.1.   Diameter Request Routing Overview.....................716.1.1.   Originating a Request........................736.1.2.   Sending a Request............................736.1.3.   Receiving Requests...........................736.1.4.   Processing Local Requests....................736.1.5.   Request Forwarding...........................746.1.6.   Request Routing..............................746.1.7.   Redirecting Requests.........................746.1.8.   Relaying and Proxying Requests...............756.2.   Diameter Answer Processing............................766.2.1.   Processing Received Answers..................776.2.2.   Relaying and Proxying Answers................776.3.   Origin-Host AVP.......................................776.4.   Origin-Realm AVP......................................786.5.   Destination-Host AVP..................................786.6.   Destination-Realm AVP.................................786.7.   Routing AVPs..........................................786.7.1.   Route-Record AVP.............................796.7.2.   Proxy-Info AVP...............................796.7.3.   Proxy-Host AVP...............................796.7.4.   Proxy-State AVP..............................796.8.   Auth-Application-Id AVP...............................796.9.   Acct-Application-Id AVP...............................796.10.  Inband-Security-Id AVP................................796.11.  Vendor-Specific-Application-Id AVP....................806.12.  Redirect-Host AVP.....................................806.13.  Redirect-Host-Usage AVP...............................806.14.  Redirect-Max-Cache-Time AVP...........................816.15.  E2E-Sequence AVP......................................82Calhoun, et al.             Standards Track                     [Page 3]

RFC 3588                Diameter Based Protocol           September 20037.  Error Handling...............................................827.1.   Result-Code AVP.......................................847.1.1.   Informational................................847.1.2.   Success......................................847.1.3.   Protocol Errors..............................857.1.4.   Transient Failures...........................867.1.5.   Permanent Failures...........................867.2.   Error Bit.............................................887.3.   Error-Message AVP.....................................897.4.   Error-Reporting-Host AVP..............................897.5.   Failed-AVP AVP........................................897.6.   Experimental-Result AVP...............................907.7.   Experimental-Result-Code AVP..........................908.  Diameter User Sessions.......................................908.1.   Authorization Session State Machine...................928.2.   Accounting Session State Machine......................968.3.   Server-Initiated Re-Auth..............................1018.3.1.   Re-Auth-Request..............................1028.3.2.   Re-Auth-Answer...............................1028.4.   Session Termination...................................1038.4.1.   Session-Termination-Request..................1048.4.2.   Session-Termination-Answer...................1058.5.   Aborting a Session....................................1058.5.1.   Abort-Session-Request........................1068.5.2.   Abort-Session-Answer.........................1068.6.   Inferring Session Termination from Origin-State-Id....1078.7.   Auth-Request-Type AVP.................................1088.8.   Session-Id AVP........................................1088.9.   Authorization-Lifetime AVP............................1098.10.  Auth-Grace-Period AVP.................................1108.11.  Auth-Session-State AVP................................1108.12.  Re-Auth-Request-Type AVP..............................1108.13.  Session-Timeout AVP...................................1118.14.  User-Name AVP.........................................1118.15.  Termination-Cause AVP.................................1118.16.  Origin-State-Id AVP...................................1128.17.  Session-Binding AVP...................................1138.18.  Session-Server-Failover AVP...........................1138.19.  Multi-Round-Time-Out AVP..............................1148.20.  Class AVP.............................................1148.21.  Event-Timestamp AVP...................................1159.  Accounting...................................................1159.1.   Server Directed Model.................................1159.2.   Protocol Messages.....................................1169.3.   Application Document Requirements.....................1169.4.   Fault Resilience......................................1169.5.   Accounting Records....................................1179.6.   Correlation of Accounting Records.....................118Calhoun, et al.             Standards Track                     [Page 4]

RFC 3588                Diameter Based Protocol           September 20039.7.   Accounting Command-Codes..............................1199.7.1.   Accounting-Request...........................1199.7.2.   Accounting-Answer............................1209.8.   Accounting AVPs.......................................1219.8.1.   Accounting-Record-Type AVP...................1219.8.2.   Acct-Interim-Interval AVP....................1229.8.3.   Accounting-Record-Number AVP.................1239.8.4.   Acct-Session-Id AVP..........................1239.8.5.   Acct-Multi-Session-Id AVP....................1239.8.6.   Accounting-Sub-Session-Id AVP................1239.8.7.   Accounting-Realtime-Required AVP.............12310. AVP Occurrence Table.........................................12410.1.  Base Protocol Command AVP Table.......................12410.2.  Accounting AVP Table..................................12611. IANA Considerations..........................................12711.1.  AVP Header............................................12711.1.1.  AVP Code.....................................12711.1.2.  AVP Flags....................................12811.2.  Diameter Header.......................................12811.2.1.  Command Codes................................12811.2.2.  Command Flags................................12911.3.  Application Identifiers...............................12911.4.  AVP Values............................................12911.4.1.  Result-Code AVP Values.......................12911.4.2.  Accounting-Record-Type AVP Values............13011.4.3.  Termination-Cause AVP Values.................13011.4.4.  Redirect-Host-Usage AVP Values...............13011.4.5.  Session-Server-Failover AVP Values...........13011.4.6.  Session-Binding AVP Values...................13011.4.7.  Disconnect-Cause AVP Values..................13011.4.8.  Auth-Request-Type AVP Values.................13011.4.9.  Auth-Session-State AVP Values................13011.4.10. Re-Auth-Request-Type AVP Values..............13111.4.11. Accounting-Realtime-Required AVP Values......13111.5.  Diameter TCP/SCTP Port Numbers........................13111.6.  NAPTR Service Fields..................................13112. Diameter Protocol Related Configurable Parameters............13113. Security Considerations......................................13213.1.  IPsec Usage...........................................13313.2.  TLS Usage.............................................13413.3.  Peer-to-Peer Considerations...........................13414. References...................................................13614.1.  Normative References..................................13614.2.  Informative References................................13815. Acknowledgements.............................................140Appendix A.  Diameter Service Template...........................141Appendix B.  NAPTR Example.......................................142Appendix C.  Duplicate Detection.................................143Calhoun, et al.             Standards Track                     [Page 5]

RFC 3588                Diameter Based Protocol           September 2003Appendix D.  Intellectual Property Statement.....................145   Authors' Addresses...............................................146   Full Copyright Statement.........................................1471.  Introduction   Authentication, Authorization and Accounting (AAA) protocols such as   TACACS [TACACS] and RADIUS [RADIUS] were initially deployed to   provide dial-up PPP [PPP] and terminal server access.  Over time,   with the growth of the Internet and the introduction of new access   technologies, including wireless, DSL, Mobile IP and Ethernet,   routers and network access servers (NAS) have increased in complexity   and density, putting new demands on AAA protocols.   Network access requirements for AAA protocols are summarized in   [AAAREQ].  These include:   Failover      [RADIUS] does not define failover mechanisms, and as a result,      failover behavior differs between implementations.  In order to      provide well defined failover behavior, Diameter supports      application-layer acknowledgements, and defines failover      algorithms and the associated state machine.  This is described inSection 5.5 and [AAATRANS].   Transmission-level security      [RADIUS] defines an application-layer authentication and integrity      scheme that is required only for use with Response packets.  While      [RADEXT] defines an additional authentication and integrity      mechanism, use is only required during Extensible Authentication      Protocol (EAP) sessions.  While attribute-hiding is supported,      [RADIUS] does not provide support for per-packet confidentiality.      In accounting, [RADACCT] assumes that replay protection is      provided by the backend billing server, rather than within the      protocol itself.      While [RFC3162] defines the use of IPsec with RADIUS, support for      IPsec is not required.  Since within [IKE] authentication occurs      only within Phase 1 prior to the establishment of IPsec SAs in      Phase 2, it is typically not possible to define separate trust or      authorization schemes for each application.  This limits the      usefulness of IPsec in inter-domain AAA applications (such as      roaming) where it may be desirable to define a distinct      certificate hierarchy for use in a AAA deployment.  In order to      provide universal support for transmission-level security, and      enable both intra- and inter-domain AAA deployments, IPsec support      is mandatory in Diameter, and TLS support is optional.  Security      is discussed inSection 13.Calhoun, et al.             Standards Track                     [Page 6]

RFC 3588                Diameter Based Protocol           September 2003   Reliable transport      RADIUS runs over UDP, and does not define retransmission behavior;      as a result, reliability varies between implementations.  As      described in [ACCMGMT], this is a major issue in accounting, where      packet loss may translate directly into revenue loss.  In order to      provide well defined transport behavior, Diameter runs over      reliable transport mechanisms (TCP, SCTP) as defined in      [AAATRANS].   Agent support      [RADIUS] does not provide for explicit support for agents,      including Proxies, Redirects and Relays.  Since the expected      behavior is not defined, it varies between implementations.      Diameter defines agent behavior explicitly; this is described inSection 2.8.   Server-initiated messages      While RADIUS server-initiated messages are defined in [DYNAUTH],      support is optional.  This makes it difficult to implement      features such as unsolicited disconnect or      reauthentication/reauthorization on demand across a heterogeneous      deployment.  Support for server-initiated messages is mandatory in      Diameter, and is described inSection 8.   Auditability      RADIUS does not define data-object security mechanisms, and as a      result, untrusted proxies may modify attributes or even packet      headers without being detected.  Combined with lack of support for      capabilities negotiation, this makes it very difficult to      determine what occurred in the event of a dispute.  While      implementation of data object security is not mandatory within      Diameter, these capabilities are supported, and are described in      [AAACMS].   Transition support      While Diameter does not share a common protocol data unit (PDU)      with RADIUS, considerable effort has been expended in enabling      backward compatibility with RADIUS, so that the two protocols may      be deployed in the same network.  Initially, it is expected that      Diameter will be deployed within new network devices, as well as      within gateways enabling communication between legacy RADIUS      devices and Diameter agents.  This capability, described in      [NASREQ], enables Diameter support to be added to legacy networks,      by addition of a gateway or server speaking both RADIUS and      Diameter.Calhoun, et al.             Standards Track                     [Page 7]

RFC 3588                Diameter Based Protocol           September 2003   In addition to addressing the above requirements, Diameter also   provides support for the following:   Capability negotiation      RADIUS does not support error messages, capability negotiation, or      a mandatory/non-mandatory flag for attributes.  Since RADIUS      clients and servers are not aware of each other's capabilities,      they may not be able to successfully negotiate a mutually      acceptable service, or in some cases, even be aware of what      service has been implemented.  Diameter includes support for error      handling (Section 7), capability negotiation (Section 5.3), and      mandatory/non-mandatory attribute-value pairs (AVPs) (Section4.1).   Peer discovery and configuration      RADIUS implementations typically require that the name or address      of servers or clients be manually configured, along with the      corresponding shared secrets.  This results in a large      administrative burden, and creates the temptation to reuse the      RADIUS shared secret, which can result in major security      vulnerabilities if the Request Authenticator is not globally and      temporally unique as required in [RADIUS].  Through DNS, Diameter      enables dynamic discovery of peers.  Derivation of dynamic session      keys is enabled via transmission-level security.   Roaming support      The ROAMOPS WG provided a survey of roaming implementations      [ROAMREV], detailed roaming requirements [ROAMCRIT], defined the      Network Access Identifier (NAI) [NAI], and documented existing      implementations (and imitations) of RADIUS-based roaming      [PROXYCHAIN].  In order to improve scalability, [PROXYCHAIN]      introduced the concept of proxy chaining via an intermediate      server, facilitating roaming between providers.  However, since      RADIUS does not provide explicit support for proxies, and lacks      auditability and transmission-level security features, RADIUS-      based roaming is vulnerable to attack from external parties as      well as susceptible to fraud perpetrated by the roaming partners      themselves.  As a result, it is not suitable for wide-scale      deployment on the Internet [PROXYCHAIN].  By providing explicit      support for inter-domain roaming and message routing (Sections2.7      and 6), auditability [AAACMS], and transmission-layer security      (Section 13) features, Diameter addresses these limitations and      provides for secure and scalable roaming.   In the decade since AAA protocols were first introduced, the   capabilities of Network Access Server (NAS) devices have increased   substantially.  As a result, while Diameter is a considerably more   sophisticated protocol than RADIUS, it remains feasible to implementCalhoun, et al.             Standards Track                     [Page 8]

RFC 3588                Diameter Based Protocol           September 2003   within embedded devices, given improvements in processor speeds and   the widespread availability of embedded IPsec and TLS   implementations.1.1.  Diameter Protocol   The Diameter base protocol provides the following facilities:   -  Delivery of AVPs (attribute value pairs)   -  Capabilities negotiation   -  Error notification   -  Extensibility, through addition of new commands and AVPs (required      in [AAAREQ]).   -  Basic services necessary for applications, such as handling of      user sessions or accounting   All data delivered by the protocol is in the form of an AVP.  Some of   these AVP values are used by the Diameter protocol itself, while   others deliver data associated with particular applications that   employ Diameter.  AVPs may be added arbitrarily to Diameter messages,   so long as the required AVPs are included and AVPs that are   explicitly excluded are not included.  AVPs are used by the base   Diameter protocol to support the following required features:   -  Transporting of user authentication information, for the purposes      of enabling the Diameter server to authenticate the user.   -  Transporting of service specific authorization information,      between client and servers, allowing the peers to decide whether a      user's access request should be granted.   -  Exchanging resource usage information, which MAY be used for      accounting purposes, capacity planning, etc.   -  Relaying, proxying and redirecting of Diameter messages through a      server hierarchy.   The Diameter base protocol provides the minimum requirements needed   for a AAA protocol, as required by [AAAREQ].  The base protocol may   be used by itself for accounting purposes only, or it may be used   with a Diameter application, such as Mobile IPv4 [DIAMMIP], or   network access [NASREQ].  It is also possible for the base protocol   to be extended for use in new applications, via the addition of new   commands or AVPs.  At this time the focus of Diameter is network   access and accounting applications.  A truly generic AAA protocol   used by many applications might provide functionality not provided by   Diameter.  Therefore, it is imperative that the designers of new   applications understand their requirements before using Diameter.Calhoun, et al.             Standards Track                     [Page 9]

RFC 3588                Diameter Based Protocol           September 2003   SeeSection 2.4 for more information on Diameter applications.   Any node can initiate a request.  In that sense, Diameter is a peer-   to-peer protocol.  In this document, a Diameter Client is a device at   the edge of the network that performs access control, such as a   Network Access Server (NAS) or a Foreign Agent (FA).  A Diameter   client generates Diameter messages to request authentication,   authorization, and accounting services for the user.  A Diameter   agent is a node that does not authenticate and/or authorize messages   locally; agents include proxies, redirects and relay agents.  A   Diameter server performs authentication and/or authorization of the   user.  A Diameter node MAY act as an agent for certain requests while   acting as a server for others.   The Diameter protocol also supports server-initiated messages, such   as a request to abort service to a particular user.1.1.1.  Description of the Document Set   Currently, the Diameter specification consists of a base   specification (this document), Transport Profile [AAATRANS] and   applications: Mobile IPv4 [DIAMMIP], and NASREQ [NASREQ].   The Transport Profile document [AAATRANS] discusses transport layer   issues that arise with AAA protocols and recommendations on how to   overcome these issues.  This document also defines the Diameter   failover algorithm and state machine.   The Mobile IPv4 [DIAMMIP] application defines a Diameter application   that allows a Diameter server to perform AAA functions for Mobile   IPv4 services to a mobile node.   The NASREQ [NASREQ] application defines a Diameter Application that   allows a Diameter server to be used in a PPP/SLIP Dial-Up and   Terminal Server Access environment.  Consideration was given for   servers that need to perform protocol conversion between Diameter and   RADIUS.   In summary, this document defines the base protocol specification for   AAA, which includes support for accounting.  The Mobile IPv4 and the   NASREQ  documents describe applications that use this base   specification for Authentication, Authorization and Accounting.Calhoun, et al.             Standards Track                    [Page 10]

RFC 3588                Diameter Based Protocol           September 20031.2.  Approach to Extensibility   The Diameter protocol is designed to be extensible, using several   mechanisms, including:      -  Defining new AVP values      -  Creating new AVPs      -  Creating new authentication/authorization applications      -  Creating new accounting applications      -  Application authentication procedures   Reuse of existing AVP values, AVPs and Diameter applications are   strongly recommended.  Reuse simplifies standardization and   implementation and avoids potential interoperability issues.  It is   expected that command codes are reused; new command codes can only be   created by IETF Consensus (seeSection 11.2.1).1.2.1.  Defining New AVP Values   New applications should attempt to reuse AVPs defined in existing   applications when possible, as opposed to creating new AVPs.  For   AVPs of type Enumerated, an application may require a new value to   communicate some service-specific information.   In order to allocate a new AVP value, a request MUST be sent to IANA   [IANA], along with an explanation of the new AVP value.  IANA   considerations for Diameter are discussed inSection 11.1.2.2.  Creating New AVPs   When no existing AVP can be used, a new AVP should be created.  The   new AVP being defined MUST use one of the data types listed inSection 4.2.   In the event that a logical grouping of AVPs is necessary, and   multiple "groups" are possible in a given command, it is recommended   that a Grouped AVP be used (seeSection 4.4).   In order to create a new AVP, a request MUST be sent to IANA, with a   specification for the AVP.  The request MUST include the commands   that would make use of the AVP.1.2.3.  Creating New Authentication Applications   Every Diameter application specification MUST have an IANA assigned   Application Identifier (seeSection 2.4) or a vendor specific   Application Identifier.Calhoun, et al.             Standards Track                    [Page 11]

RFC 3588                Diameter Based Protocol           September 2003   Should a new Diameter usage scenario find itself unable to fit within   an existing application without requiring major changes to the   specification, it may be desirable to create a new Diameter   application.  Major changes to an application include:   -  Adding new AVPs to the command, which have the "M" bit set.   -  Requiring a command that has a different number of round trips to      satisfy a request (e.g., application foo has a command that      requires one round trip, but new application bar has a command      that requires two round trips to complete).   -  Adding support for an authentication method requiring definition      of new AVPs for use with the application.  Since a new EAP      authentication method can be supported within Diameter without      requiring new AVPs, addition of EAP methods does not require the      creation of a new authentication application.   Creation of a new application should be viewed as a last resort.  An   implementation MAY add arbitrary non-mandatory AVPs to any command   defined in an application, including vendor-specific AVPs without   needing to define a new application.  Please refer toSection 11.1.1   for details.   In order to justify allocation of a new application identifier,   Diameter applications MUST define one Command Code, or add new   mandatory AVPs to the ABNF.   The expected AVPs MUST be defined in an ABNF [ABNF] grammar (seeSection 3.2).  If the Diameter application has accounting   requirements, it MUST also specify the AVPs that are to be present in   the Diameter Accounting messages (seeSection 9.3).  However, just   because a new authentication application id is required, does not   imply that a new accounting application id is required.   When possible, a new Diameter application SHOULD reuse existing   Diameter AVPs, in order to avoid defining multiple AVPs that carry   similar information.1.2.4.  Creating New Accounting Applications   There are services that only require Diameter accounting.  Such   services need to define the AVPs carried in the Accounting-Request   (ACR)/ Accounting-Answer (ACA) messages, but do not need to define   new command codes.  An implementation MAY add arbitrary non-mandatory   AVPs (AVPs with the "M" bit not set) to any command defined in anCalhoun, et al.             Standards Track                    [Page 12]

RFC 3588                Diameter Based Protocol           September 2003   application, including vendor-specific AVPs, without needing to   define a new accounting application.  Please refer toSection 11.1.1   for details.   Application Identifiers are still required for Diameter capability   exchange.  Every Diameter accounting application specification MUST   have an IANA assigned Application Identifier (seeSection 2.4) or a   vendor specific Application Identifier.   Every Diameter implementation MUST support accounting.  Basic   accounting support is sufficient to handle any application that uses   the ACR/ACA commands defined in this document, as long as no new   mandatory AVPs are added.  A mandatory AVP is defined as one which   has the "M" bit set when sent within an accounting command,   regardless of whether it is required or optional within the ABNF for   the accounting application.   The creation of a new accounting application should be viewed as a   last resort and MUST NOT be used unless a new command or additional   mechanisms (e.g., application defined state machine) is defined   within the application, or new mandatory AVPs are added to the ABNF.   Within an accounting command, setting the "M" bit implies that a   backend server (e.g., billing server) or the accounting server itself   MUST understand the AVP in order to compute a correct bill.  If the   AVP is not relevant to the billing process, when the AVP is included   within an accounting command, it MUST NOT have the "M" bit set, even   if the "M" bit is set when the same AVP is used within other Diameter   commands (i.e., authentication/authorization commands).   A DIAMETER base accounting implementation MUST be configurable to   advertise supported accounting applications in order to prevent the   accounting server from accepting accounting requests for unbillable   services.  The combination of the home domain and the accounting   application Id can be used in order to route the request to the   appropriate accounting server.   When possible, a new Diameter accounting application SHOULD attempt   to reuse existing AVPs, in order to avoid defining multiple AVPs that   carry similar information.   If the base accounting is used without any mandatory AVPs, new   commands or additional mechanisms (e.g., application defined state   machine), then the base protocol defined standard accounting   application Id (Section 2.4) MUST be used in ACR/ACA commands.Calhoun, et al.             Standards Track                    [Page 13]

RFC 3588                Diameter Based Protocol           September 20031.2.5.  Application Authentication Procedures   When possible, applications SHOULD be designed such that new   authentication methods MAY be added without requiring changes to the   application.  This MAY require that new AVP values be assigned to   represent the new authentication transform, or any other scheme that   produces similar results.  When possible, authentication frameworks,   such as Extensible Authentication Protocol [EAP], SHOULD be used.1.3.  Terminology   AAA      Authentication, Authorization and Accounting.   Accounting      The act of collecting information on resource usage for the      purpose of capacity planning, auditing, billing or cost      allocation.   Accounting Record      An accounting record represents a summary of the resource      consumption of a user over the entire session.  Accounting servers      creating the accounting record may do so by processing interim      accounting events or accounting events from several devices      serving the same user.   Authentication      The act of verifying the identity of an entity (subject).   Authorization      The act of determining whether a requesting entity (subject) will      be allowed access to a resource (object).   AVP      The Diameter protocol consists of a header followed by one or more      Attribute-Value-Pairs (AVPs).  An AVP includes a header and is      used to encapsulate protocol-specific data (e.g., routing      information) as well as authentication, authorization or      accounting information.   Broker      A broker is a business term commonly used in AAA infrastructures.      A broker is either a relay, proxy or redirect agent, and MAY be      operated by roaming consortiums.  Depending on the business model,      a broker may either choose to  deploy relay agents or proxy      agents.Calhoun, et al.             Standards Track                    [Page 14]

RFC 3588                Diameter Based Protocol           September 2003   Diameter Agent      A Diameter Agent is a Diameter node that provides either relay,      proxy, redirect or translation services.   Diameter Client      A Diameter Client is a device at the edge of the network that      performs access control.  An example of a Diameter client is a      Network Access Server (NAS) or a Foreign Agent (FA).   Diameter Node      A Diameter node is a host process that implements the Diameter      protocol, and acts either as a Client, Agent or Server.   Diameter Peer      A Diameter Peer is a Diameter Node to which a given Diameter Node      has a direct transport connection.   Diameter Security Exchange      A Diameter Security Exchange is a process through which two      Diameter nodes establish end-to-end security.   Diameter Server      A Diameter Server is one that handles authentication,      authorization and accounting requests for a particular realm.  By      its very nature, a Diameter Server MUST support Diameter      applications in addition to the base protocol.   Downstream      Downstream is used to identify the direction of a particular      Diameter message from the home server towards the access device.   End-to-End Security      TLS and IPsec provide hop-by-hop security, or security across a      transport connection.  When relays or proxy are involved, this      hop-by-hop security does not protect the entire Diameter user      session.  End-to-end security is security between two Diameter      nodes, possibly communicating through Diameter Agents.  This      security protects the entire Diameter communications path from the      originating Diameter node to the terminating Diameter node.   Home Realm      A Home Realm is the administrative domain with which the user      maintains an account relationship.   Home Server      See Diameter Server.Calhoun, et al.             Standards Track                    [Page 15]

RFC 3588                Diameter Based Protocol           September 2003   Interim accounting      An interim accounting message provides a snapshot of usage during      a user's session.  It is typically implemented in order to provide      for partial accounting of a user's session in the case of a device      reboot or other network problem prevents the reception of a      session summary message or session record.   Local Realm      A local realm is the administrative domain providing services to a      user.  An administrative domain MAY act as a local realm for      certain users, while being a home realm for others.   Multi-session      A multi-session represents a logical linking of several sessions.      Multi-sessions are tracked by using the Acct-Multi-Session-Id.  An      example of a multi-session would be a Multi-link PPP bundle.  Each      leg of the bundle would be a session while the entire bundle would      be a multi-session.   Network Access Identifier      The Network Access Identifier, or NAI [NAI], is used in the      Diameter protocol to extract a user's identity and realm.  The      identity is used to identify the user during authentication and/or      authorization, while the realm is used for message routing      purposes.   Proxy Agent or Proxy      In addition to forwarding requests and responses, proxies make      policy decisions relating to resource usage and provisioning.      This is typically accomplished by tracking the state of NAS      devices.  While proxies typically do not respond to client      Requests prior to receiving a Response from the server, they may      originate Reject messages in cases where policies are violated.      As a result, proxies need to understand the semantics of the      messages passing through them, and may not support all Diameter      applications.   Realm      The string in the NAI that immediately follows the '@' character.      NAI realm names are required to be unique, and are piggybacked on      the administration of the DNS namespace.  Diameter makes use of      the realm, also loosely referred to as domain, to determine      whether messages can be satisfied locally, or whether they must be      routed or redirected.  In RADIUS, realm names are not necessarily      piggybacked on the DNS namespace but may be independent of it.Calhoun, et al.             Standards Track                    [Page 16]

RFC 3588                Diameter Based Protocol           September 2003   Real-time Accounting      Real-time accounting involves the processing of information on      resource usage within a defined time window.  Time constraints are      typically imposed in order to limit financial risk.   Relay Agent or Relay      Relays forward requests and responses based on routing-related      AVPs and realm routing table entries.  Since relays do not make      policy decisions, they do not examine or alter non-routing AVPs.      As a result, relays never originate messages, do not need to      understand the semantics of messages or non-routing AVPs, and are      capable of handling any Diameter application or message type.      Since relays make decisions based on information in routing AVPs      and realm forwarding tables they do not keep state on NAS resource      usage or sessions in progress.   Redirect Agent      Rather than forwarding requests and responses between clients and      servers, redirect agents refer clients to servers and allow them      to communicate directly.  Since redirect agents do not sit in the      forwarding path, they do not alter any AVPs transiting between      client and server.  Redirect agents do not originate messages and      are capable of handling any message type, although they may be      configured only to redirect messages of certain types, while      acting as relay or proxy agents for other types.  As with proxy      agents, redirect agents do not keep state with respect to sessions      or NAS resources.   Roaming Relationships      Roaming relationships include relationships between companies and      ISPs, relationships among peer ISPs within a roaming consortium,      and relationships between an ISP and a roaming consortium.   Security Association      A security association is an association between two endpoints in      a Diameter session which allows the endpoints to communicate with      integrity and confidentially, even in the presence of relays      and/or proxies.   Session      A session is a related progression of events devoted to a      particular activity.  Each application SHOULD provide guidelines      as to when a session begins and ends.  All Diameter packets with      the same Session-Identifier are considered to be part of the same      session.Calhoun, et al.             Standards Track                    [Page 17]

RFC 3588                Diameter Based Protocol           September 2003   Session state      A stateful agent is one that maintains session state information,      by keeping track of all authorized active sessions.  Each      authorized session is bound to a particular service, and its state      is considered active either until it is notified otherwise, or by      expiration.   Sub-session      A sub-session represents a distinct service (e.g., QoS or data      characteristics) provided to a given session.  These services may      happen concurrently (e.g., simultaneous voice and data transfer      during the same session) or serially.  These changes in sessions      are tracked with the Accounting-Sub-Session-Id.   Transaction state      The Diameter protocol requires that agents maintain transaction      state, which is used for failover purposes.  Transaction state      implies that upon forwarding a request, the Hop-by-Hop identifier      is saved; the field is replaced with a locally unique identifier,      which is restored to its original value when the corresponding      answer is received.  The request's state is released upon receipt      of the answer.  A stateless agent is one that only maintains      transaction state.   Translation Agent      A translation agent is a stateful Diameter node that performs      protocol translation between Diameter and another AAA protocol,      such as RADIUS.   Transport Connection      A transport connection is a TCP or SCTP connection existing      directly between two Diameter peers, otherwise known as a Peer-      to-Peer Connection.   Upstream      Upstream is used to identify the direction of a particular      Diameter message from the access device towards the home server.   User      The entity requesting or using some resource, in support of which      a Diameter client has generated a request.2.  Protocol Overview   The base Diameter protocol may be used by itself for accounting   applications, but for use in authentication and authorization it is   always extended for a particular application.  Two Diameter   applications are defined by companion documents:  NASREQ [NASREQ],Calhoun, et al.             Standards Track                    [Page 18]

RFC 3588                Diameter Based Protocol           September 2003   Mobile IPv4 [DIAMMIP].  These applications are introduced in this   document but specified elsewhere.  Additional Diameter applications   MAY be defined in the future (seeSection 11.3).   Diameter Clients MUST support the base protocol, which includes   accounting.  In addition, they MUST fully support each Diameter   application that is needed to implement the client's service, e.g.,   NASREQ and/or Mobile IPv4.  A Diameter Client that does not support   both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X   Client" where X is the application which it supports, and not a   "Diameter Client".   Diameter Servers MUST support the base protocol, which includes   accounting.  In addition, they MUST fully support each Diameter   application that is needed to implement the intended service, e.g.,   NASREQ and/or Mobile IPv4.  A Diameter Server that does not support   both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X   Server" where X is the application which it supports, and not a   "Diameter Server".   Diameter Relays and redirect agents are, by definition, protocol   transparent, and MUST transparently support the Diameter base   protocol, which includes accounting, and all Diameter applications.   Diameter proxies MUST support the base protocol, which includes   accounting.  In addition, they MUST fully support each Diameter   application that is needed to implement proxied services, e.g.,   NASREQ and/or Mobile IPv4.  A Diameter proxy which does not support   also both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X   Proxy" where X is the application which it supports, and not a   "Diameter Proxy".   The base Diameter protocol concerns itself with capabilities   negotiation, how messages are sent and how peers may eventually be   abandoned.  The base protocol also defines certain rules that apply   to all exchanges of messages between Diameter nodes.   Communication between Diameter peers begins with one peer sending a   message to another Diameter peer.  The set of AVPs included in the   message is determined by a particular Diameter application.  One AVP   that is included to reference a user's session is the Session-Id.   The initial request for authentication and/or authorization of a user   would include the Session-Id.  The Session-Id is then used in all   subsequent messages to identify the user's session (seeSection 8 for   more information).  The communicating party may accept the request,   or reject it by returning an answer message with the Result-Code AVPCalhoun, et al.             Standards Track                    [Page 19]

RFC 3588                Diameter Based Protocol           September 2003   set to indicate an error occurred.  The specific behavior of the   Diameter server or client receiving a request depends on the Diameter   application employed.   Session state (associated with a Session-Id) MUST be freed upon   receipt of the Session-Termination-Request, Session-Termination-   Answer, expiration of authorized service time in the Session-Timeout   AVP, and according to rules established in a particular Diameter   application.2.1.  Transport   Transport profile is defined in [AAATRANS].   The base Diameter protocol is run on port 3868 of both TCP [TCP] and   SCTP [SCTP] transport protocols.   Diameter clients MUST support either TCP or SCTP, while agents and   servers MUST support both.  Future versions of this specification MAY   mandate that clients support SCTP.   A Diameter node MAY initiate connections from a source port other   than the one that it declares it accepts incoming connections on, and   MUST be prepared to receive connections on port 3868.  A given   Diameter instance of the peer state machine MUST NOT use more than   one transport connection to communicate with a given peer, unless   multiple instances exist on the peer in which case a separate   connection per process is allowed.   When no transport connection exists with a peer, an attempt to   connect SHOULD be periodically made.  This behavior is handled via   the Tc timer, whose recommended value is 30 seconds.  There are   certain exceptions to this rule, such as when a peer has terminated   the transport connection stating that it does not wish to   communicate.   When connecting to a peer and either zero or more transports are   specified, SCTP SHOULD be tried first, followed by TCP.  SeeSection5.2 for more information on peer discovery.   Diameter implementations SHOULD be able to interpret ICMP protocol   port unreachable messages as explicit indications that the server is   not reachable, subject to security policy on trusting such messages.   Diameter implementations SHOULD also be able to interpret a reset   from the transport and timed-out connection attempts.Calhoun, et al.             Standards Track                    [Page 20]

RFC 3588                Diameter Based Protocol           September 2003   If Diameter receives data up from TCP that cannot be parsed or   identified as a Diameter error made by the peer, the stream is   compromised and cannot be recovered.  The transport connection MUST   be closed using a RESET call (send a TCP RST bit) or an SCTP ABORT   message (graceful closure is compromised).2.1.1.  SCTP Guidelines   The following are guidelines for Diameter implementations that   support SCTP:   1. For interoperability: All Diameter nodes MUST be prepared to      receive Diameter messages on any SCTP stream in the association.   2. To prevent blocking: All Diameter nodes SHOULD utilize all SCTP      streams available to the association to prevent head-of-the-line      blocking.2.2.  Securing Diameter Messages   Diameter clients, such as Network Access Servers (NASes) and Mobility   Agents MUST support IP Security [SECARCH], and MAY support TLS [TLS].   Diameter servers MUST support TLS and IPsec.  The Diameter protocol   MUST NOT be used without any security mechanism (TLS or IPsec).   It is suggested that IPsec can be used primarily at the edges and in   intra-domain traffic, such as using pre-shared keys between a NAS a   local AAA proxy.  This also eases the requirements on the NAS to   support certificates.  It is also suggested that inter-domain traffic   would primarily use TLS.  See Sections13.1 and13.2 for more details   on IPsec and TLS usage.2.3.  Diameter Application Compliance   Application Identifiers are advertised during the capabilities   exchange phase (seeSection 5.3).  For a given application,   advertising support of an application implies that the sender   supports all command codes, and the AVPs specified in the associated   ABNFs, described in the specification.   An implementation MAY add arbitrary non-mandatory AVPs to any command   defined in an application, including vendor-specific AVPs.  Please   refer toSection 11.1.1 for details.Calhoun, et al.             Standards Track                    [Page 21]

RFC 3588                Diameter Based Protocol           September 20032.4.  Application Identifiers   Each Diameter application MUST have an IANA assigned Application   Identifier (seeSection 11.3).  The base protocol does not require an   Application Identifier since its support is mandatory.  During the   capabilities exchange, Diameter nodes inform their peers of locally   supported applications.  Furthermore, all Diameter messages contain   an Application Identifier, which is used in the message forwarding   process.   The following Application Identifier values are defined:      Diameter Common Messages      0      NASREQ                        1 [NASREQ]      Mobile-IP                     2 [DIAMMIP]      Diameter Base Accounting      3      Relay                         0xffffffff   Relay and redirect agents MUST advertise the Relay Application   Identifier, while all other Diameter nodes MUST advertise locally   supported applications.  The receiver of a Capabilities Exchange   message advertising Relay service MUST assume that the sender   supports all current and future applications.   Diameter relay and proxy agents are responsible for finding an   upstream server that supports the application of a particular   message.  If none can be found, an error message is returned with the   Result-Code AVP set to DIAMETER_UNABLE_TO_DELIVER.2.5.  Connections vs. Sessions   This section attempts to provide the reader with an understanding of   the difference between connection and session, which are terms used   extensively throughout this document.   A connection is a transport level connection between two peers, used   to send and receive Diameter messages.  A session is a logical   concept at the application layer, and is shared between an access   device and a server, and is identified via the Session-Id AVPCalhoun, et al.             Standards Track                    [Page 22]

RFC 3588                Diameter Based Protocol           September 2003          +--------+          +-------+          +--------+          | Client |          | Relay |          | Server |          +--------+          +-------+          +--------+                   <---------->       <---------->                peer connection A   peer connection B                   <----------------------------->                           User session x               Figure 1: Diameter connections and sessions   In the example provided in Figure 1, peer connection A is established   between the Client and its local Relay.  Peer connection B is   established between the Relay and the Server.  User session X spans   from the Client via the Relay to the Server.  Each "user" of a   service causes an auth request to be sent, with a unique session   identifier. Once accepted by the server, both the client and the   server are aware of the session.  It is important to note that there   is no relationship between a connection and a session, and that   Diameter messages for multiple sessions are all multiplexed through a   single connection.2.6.  Peer Table   The Diameter Peer Table is used in message forwarding, and referenced   by the Realm Routing Table.  A Peer Table entry contains the   following fields:   Host identity      Following the conventions described for the DiameterIdentity      derived AVP data format inSection 4.4. This field contains the      contents of the Origin-Host (Section 6.3) AVP found in the CER or      CEA message.   StatusT      This is the state of the peer entry, and MUST match one of the      values listed inSection 5.6.   Static or Dynamic      Specifies whether a peer entry was statically configured, or      dynamically discovered.   Expiration time      Specifies the time at which dynamically discovered peer table      entries are to be either refreshed, or expired.Calhoun, et al.             Standards Track                    [Page 23]

RFC 3588                Diameter Based Protocol           September 2003   TLS Enabled      Specifies whether TLS is to be used when communicating with the      peer.   Additional security information, when needed (e.g., keys,   certificates)2.7.  Realm-Based Routing Table   All Realm-Based routing lookups are performed against what is   commonly known as the Realm Routing Table (seeSection 12).  A Realm   Routing Table Entry contains the following fields:   Realm Name      This is the field that is typically used as a primary key in the      routing table lookups.  Note that some implementations perform      their lookups based on longest-match-from-the-right on the realm      rather than requiring an exact match.   Application Identifier      An application is identified by a vendor id and an application id.      For all IETF standards track Diameter applications, the vendor id      is zero.  A route entry can have a different destination based on      the application identification AVP of the message.  This field      MUST be used as a secondary key field in routing table lookups.   Local Action      The Local Action field is used to identify how a message should be      treated.  The following actions are supported:      1. LOCAL - Diameter messages that resolve to a route entry with         the Local Action set to Local can be satisfied locally, and do         not need to be routed to another server.      2. RELAY - All Diameter messages that fall within this category         MUST be routed to a next hop server, without modifying any         non-routing AVPs.  SeeSection 6.1.8 for relaying guidelines      3. PROXY - All Diameter messages that fall within this category         MUST be routed to a next hop server.  The local server MAY         apply its local policies to the message by including new AVPs         to the message prior to routing.  SeeSection 6.1.8 for         proxying guidelines.      4. REDIRECT - Diameter messages that fall within this category         MUST have the identity of the home Diameter server(s) appended,         and returned to the sender of the message.  SeeSection 6.1.7         for redirect guidelines.Calhoun, et al.             Standards Track                    [Page 24]

RFC 3588                Diameter Based Protocol           September 2003   Server Identifier      One or more servers the message is to be routed to.  These servers      MUST also be present in the Peer table. When the Local Action is      set to RELAY or PROXY, this field contains the identity of the      server(s) the message must be routed to.  When the Local Action      field is set to REDIRECT, this field contains the identity of one      or more servers the message should be redirected to.   Static or Dynamic      Specifies whether a route entry was statically configured, or      dynamically discovered.   Expiration time      Specifies the time which a dynamically discovered route table      entry expires.   It is important to note that Diameter agents MUST support at least   one of the LOCAL, RELAY, PROXY or REDIRECT modes of operation.   Agents do not need to support all modes of operation in order to   conform with the protocol specification, but MUST follow the protocol   compliance guidelines inSection 2.  Relay agents MUST NOT reorder   AVPs, and proxies MUST NOT reorder AVPs.   The routing table MAY include a default entry that MUST be used for   any requests not matching any of the other entries.  The routing   table MAY consist of only such an entry.   When a request is routed, the target server MUST have advertised the   Application Identifier (seeSection 2.4) for the given message, or   have advertised itself as a relay or proxy agent.  Otherwise, an   error is returned with the Result-Code AVP set to   DIAMETER_UNABLE_TO_DELIVER.2.8.  Role of Diameter Agents   In addition to client and servers, the Diameter protocol introduces   relay, proxy, redirect, and translation agents, each of which is   defined inSection 1.3.  These Diameter agents are useful for several   reasons:   -  They can distribute administration of systems to a configurable      grouping, including the maintenance of security associations.   -  They can be used for concentration of requests from an number of      co-located or distributed NAS equipment sets to a set of like user      groups.   -  They can do value-added processing to the requests or responses.Calhoun, et al.             Standards Track                    [Page 25]

RFC 3588                Diameter Based Protocol           September 2003   -  They can be used for load balancing.   -  A complex network will have multiple authentication sources, they      can sort requests and forward towards the correct target.   The Diameter protocol requires that agents maintain transaction   state, which is used for failover purposes.  Transaction state   implies that upon forwarding a request, its Hop-by-Hop identifier is   saved; the field is replaced with a locally unique identifier, which   is restored to its original value when the corresponding answer is   received.  The request's state is released upon receipt of the   answer.  A stateless agent is one that only maintains transaction   state.   The Proxy-Info AVP allows stateless agents to add local state to a   Diameter request, with the guarantee that the same state will be   present in the answer.  However, the protocol's failover procedures   require that agents maintain a copy of pending requests.   A stateful agent is one that maintains session state information; by   keeping track of all authorized active sessions.  Each authorized   session is bound to a particular service, and its state is considered   active either until it is notified otherwise, or by expiration.  Each   authorized session has an expiration, which is communicated by   Diameter servers via the Session-Timeout AVP.   Maintaining session state MAY be useful in certain applications, such   as:   -  Protocol translation (e.g., RADIUS <-> Diameter)   -  Limiting resources authorized to a particular user   -  Per user or transaction auditing   A Diameter agent MAY act in a stateful manner for some requests and   be stateless for others.  A Diameter implementation MAY act as one   type of agent for some requests, and as another type of agent for   others.2.8.1.  Relay Agents   Relay Agents are Diameter agents that accept requests and route   messages to other Diameter nodes based on information found in the   messages (e.g., Destination-Realm).  This routing decision is   performed using a list of supported realms, and known peers.  This is   known as the Realm Routing Table, as is defined further inSection2.7.Calhoun, et al.             Standards Track                    [Page 26]

RFC 3588                Diameter Based Protocol           September 2003   Relays MAY be used to aggregate requests from multiple Network Access   Servers (NASes) within a common geographical area (POP).  The use of   Relays is advantageous since it eliminates the need for NASes to be   configured with the necessary security information they would   otherwise require to communicate with Diameter servers in other   realms.  Likewise, this reduces the configuration load on Diameter   servers that would otherwise be necessary when NASes are added,   changed or deleted.   Relays modify Diameter messages by inserting and removing routing   information, but do not modify any other portion of a message.   Relays SHOULD NOT maintain session state but MUST maintain   transaction state.    +------+    --------->     +------+     --------->    +------+    |      |    1. Request     |      |     2. Request    |      |    | NAS  |                   | DRL  |                   | HMS  |    |      |    4. Answer      |      |     3. Answer     |      |    +------+    <---------     +------+     <---------    +------+   example.net                example.net                example.com                  Figure 2: Relaying of Diameter messages   The example provided in Figure 2 depicts a request issued from NAS,   which is an access device, for the user bob@example.com.  Prior to   issuing the request, NAS performs a Diameter route lookup, using   "example.com" as the key, and determines that the message is to be   relayed to DRL, which is a Diameter Relay.  DRL performs the same   route lookup as NAS, and relays the message to HMS, which is   example.com's Home Diameter Server.  HMS identifies that the request   can be locally supported (via the realm), processes the   authentication and/or authorization request, and replies with an   answer, which is routed back to NAS using saved transaction state.   Since Relays do not perform any application level processing, they   provide relaying services for all Diameter applications, and   therefore MUST advertise the Relay Application Identifier.2.8.2.  Proxy Agents   Similarly to relays, proxy agents route Diameter messages using the   Diameter Routing Table.  However, they differ since they modify   messages to implement policy enforcement.  This requires that proxies   maintain the state of their downstream peers (e.g., access devices)   to enforce resource usage, provide admission control, and   provisioning.Calhoun, et al.             Standards Track                    [Page 27]

RFC 3588                Diameter Based Protocol           September 2003   It is important to note that although proxies MAY provide a value-add   function for NASes, they do not allow access devices to use end-to-   end security, since modifying messages breaks authentication.   Proxies MAY be used in call control centers or access ISPs that   provide outsourced connections, they can monitor the number and types   of ports in use, and make allocation and admission decisions   according to their configuration.   Proxies that wish to limit resources MUST maintain session state.   All proxies MUST maintain transaction state.   Since enforcing policies requires an understanding of the service   being provided, Proxies MUST only advertise the Diameter applications   they support.2.8.3.  Redirect Agents   Redirect agents are useful in scenarios where the Diameter routing   configuration needs to be centralized.  An example is a redirect   agent that provides services to all members of a consortium, but does   not wish to be burdened with relaying all messages between realms.   This scenario is advantageous since it does not require that the   consortium provide routing updates to its members when changes are   made to a member's infrastructure.   Since redirect agents do not relay messages, and only return an   answer with the information necessary for Diameter agents to   communicate directly, they do not modify messages.  Since redirect   agents do not receive answer messages, they cannot maintain session   state.  Further, since redirect agents never relay requests, they are   not required to maintain transaction state.   The example provided in Figure 3 depicts a request issued from the   access device, NAS, for the user bob@example.com.  The message is   forwarded by the NAS to its relay, DRL, which does not have a routing   entry in its Diameter Routing Table for example.com.  DRL has a   default route configured to DRD, which is a redirect agent that   returns a redirect notification to DRL, as well as HMS' contact   information.  Upon receipt of the redirect notification, DRL   establishes a transport connection with HMS, if one doesn't already   exist, and forwards the request to it.Calhoun, et al.             Standards Track                    [Page 28]

RFC 3588                Diameter Based Protocol           September 2003                               +------+                               |      |                               | DRD  |                               |      |                               +------+                                ^    |                    2. Request  |    | 3. Redirection                                |    |    Notification                                |    v    +------+    --------->     +------+     --------->    +------+    |      |    1. Request     |      |     4. Request    |      |    | NAS  |                   | DRL  |                   | HMS  |    |      |    6. Answer      |      |     5. Answer     |      |    +------+    <---------     +------+     <---------    +------+   example.net                example.net               example.com                 Figure 3: Redirecting a Diameter Message   Since redirect agents do not perform any application level   processing, they provide relaying services for all Diameter   applications, and therefore MUST advertise the Relay Application   Identifier.2.8.4.  Translation Agents   A translation agent is a device that provides translation between two   protocols (e.g., RADIUS<->Diameter, TACACS+<->Diameter).  Translation   agents are likely to be used as aggregation servers to communicate   with a Diameter infrastructure, while allowing for the embedded   systems to be migrated at a slower pace.   Given that the Diameter protocol introduces the concept of long-lived   authorized sessions, translation agents MUST be session stateful and   MUST maintain transaction state.   Translation of messages can only occur if the agent recognizes the   application of a particular request, and therefore translation agents   MUST only advertise their locally supported applications.    +------+    --------->     +------+     --------->    +------+    |      |  RADIUS Request   |      |  Diameter Request |      |    | NAS  |                   | TLA  |                   | HMS  |    |      |  RADIUS Answer    |      |  Diameter Answer  |      |    +------+    <---------     +------+     <---------    +------+   example.net                example.net               example.com                Figure 4: Translation of RADIUS to DiameterCalhoun, et al.             Standards Track                    [Page 29]

RFC 3588                Diameter Based Protocol           September 20032.9.  End-to-End Security Framework   End-to-end security services include confidentiality and message   origin authentication.  These services are provided by supporting AVP   integrity and confidentiality between two peers, communicating   through agents.   End-to-end security is provided via the End-to-End security   extension, described in [AAACMS].  The circumstances requiring the   use of end-to-end security are determined by policy on each of the   peers. Security policies, which are not the subject of   standardization, may be applied by next hop Diameter peer or by   destination realm.  For example, where TLS or IPsec transmission-   level security is sufficient, there may be no need for end-to-end   security.   End-to-end security policies include:   -  Never use end-to-end security.   -  Use end-to-end security on messages containing sensitive AVPs.      Which AVPs are sensitive is determined by service provider policy.      AVPs containing keys and passwords should be considered sensitive.      Accounting AVPs may be considered sensitive.  Any AVP for which      the P bit may be set or which may be encrypted may be considered      sensitive.   -  Always use end-to-end security.   It is strongly RECOMMENDED that all Diameter implementations support   end-to-end security.2.10.  Diameter Path Authorization   As noted inSection 2.2, Diameter requires transmission level   security to be used on each connection (TLS or IPsec).  Therefore,   each connection is authenticated, replay and integrity protected and   confidential on a per-packet basis.   In addition to authenticating each connection, each connection as   well as the entire session MUST also be authorized.  Before   initiating a connection, a Diameter Peer MUST check that its peers   are authorized to act in their roles.  For example, a Diameter peer   may be authentic, but that does not mean that it is authorized to act   as a Diameter Server advertising a set of Diameter applications.Calhoun, et al.             Standards Track                    [Page 30]

RFC 3588                Diameter Based Protocol           September 2003   Prior to bringing up a connection, authorization checks are performed   at each connection along the path.  Diameter capabilities negotiation   (CER/CEA) also MUST be carried out, in order to determine what   Diameter applications are supported by each peer.  Diameter sessions   MUST be routed only through authorized nodes that have advertised   support for the Diameter application required by the session.   As noted inSection 6.1.8, a relay or proxy agent MUST append a   Route-Record AVP to all requests forwarded.  The AVP contains the   identity of the peer the request was received from.   The home Diameter server, prior to authorizing a session, MUST check   the Route-Record AVPs to make sure that the route traversed by the   request is acceptable.  For example, administrators within the home   realm may not wish to honor requests that have been routed through an   untrusted realm.  By authorizing a request, the home Diameter server   is implicitly indicating its willingness to engage in the business   transaction as specified by the contractual relationship between the   server and the previous hop.  A DIAMETER_AUTHORIZATION_REJECTED error   message (seeSection 7.1.5) is sent if the route traversed by the   request is unacceptable.   A home realm may also wish to check that each accounting request   message corresponds to a Diameter response authorizing the session.   Accounting requests without corresponding authorization responses   SHOULD be subjected to further scrutiny, as should accounting   requests indicating a difference between the requested and provided   service.   Similarly, the local Diameter agent, on receiving a Diameter response   authorizing a session, MUST check the Route-Record AVPs to make sure   that the route traversed by the response is acceptable.  At each   step, forwarding of an authorization response is considered evidence   of a willingness to take on financial risk relative to the session.   A local realm may wish to limit this exposure, for example, by   establishing credit limits for intermediate realms and refusing to   accept responses which would violate those limits.  By issuing an   accounting request corresponding to the authorization response, the   local realm implicitly indicates its agreement to provide the service   indicated in the authorization response.  If the service cannot be   provided by the local realm, then a DIAMETER_UNABLE_TO_COMPLY error   message MUST be sent within the accounting request; a Diameter client   receiving an authorization response for a service that it cannot   perform MUST NOT substitute an alternate service, and then send   accounting requests for the alternate service instead.Calhoun, et al.             Standards Track                    [Page 31]

RFC 3588                Diameter Based Protocol           September 20033.  Diameter Header   A summary of the Diameter header format is shown below.  The fields   are transmitted in network byte order.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Version    |                 Message Length                |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | command flags |                  Command-Code                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                         Application-ID                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                      Hop-by-Hop Identifier                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                      End-to-End Identifier                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  AVPs ...   +-+-+-+-+-+-+-+-+-+-+-+-+-   Version      This Version field MUST be set to 1 to indicate Diameter Version      1.   Message Length      The Message Length field is three octets and indicates the length      of the Diameter message including the header fields.   Command Flags      The Command Flags field is eight bits.  The following bits are      assigned:       0 1 2 3 4 5 6 7      +-+-+-+-+-+-+-+-+      |R P E T r r r r|      +-+-+-+-+-+-+-+-+      R(equest)   - If set, the message is a request.  If cleared, the                    message is an answer.      P(roxiable) - If set, the message MAY be proxied, relayed or                    redirected.  If cleared, the message MUST be                    locally processed.      E(rror)     - If set, the message contains a protocol error,                    and the message will not conform to the ABNF                    described for this command.  Messages with the 'E'Calhoun, et al.             Standards Track                    [Page 32]

RFC 3588                Diameter Based Protocol           September 2003                    bit set are commonly referred to as error                    messages.  This bit MUST NOT be set in request                    messages.  SeeSection 7.2.      T(Potentially re-transmitted message)                  - This flag is set after a link failover procedure,                    to aid the removal of duplicate requests.  It is                    set when resending requests not yet acknowledged,                    as an indication of a possible duplicate due to a                    link failure.  This bit MUST be cleared when                    sending a request for the first time, otherwise                    the sender MUST set this flag.  Diameter agents                    only need to be concerned about the number of                    requests they send based on a single received                    request; retransmissions by other entities need                    not be tracked.  Diameter agents that receive a                    request with the T flag set, MUST keep the T flag                    set in the forwarded request.  This flag MUST NOT                    be set if an error answer message (e.g., a                    protocol error) has been received for the earlier                    message.  It can be set only in cases where no                    answer has been received from the server for a                    request and the request is sent again.  This flag                    MUST NOT be set in answer messages.      r(eserved)  - these flag bits are reserved for future use, and                    MUST be set to zero, and ignored by the receiver.   Command-Code      The Command-Code field is three octets, and is used in order to      communicate the command associated with the message.  The 24-bit      address space is managed by IANA (seeSection 11.2.1).      Command-Code values 16,777,214 and 16,777,215 (hexadecimal values      FFFFFE -FFFFFF) are reserved for experimental use (SeeSection11.3).   Application-ID      Application-ID is four octets and is used to identify to which      application the message is applicable for.  The application can be      an authentication application, an accounting application or a      vendor specific application.  SeeSection 11.3 for the possible      values that the application-id may use.      The application-id in the header MUST be the same as what is      contained in any relevant AVPs contained in the message.Calhoun, et al.             Standards Track                    [Page 33]

RFC 3588                Diameter Based Protocol           September 2003   Hop-by-Hop Identifier      The Hop-by-Hop Identifier is an unsigned 32-bit integer field (in      network byte order) and aids in matching requests and replies.      The sender MUST ensure that the Hop-by-Hop identifier in a request      is unique on a given connection at any given time, and MAY attempt      to ensure that the number is unique across reboots.  The sender of      an Answer message MUST ensure that the Hop-by-Hop Identifier field      contains the same value that was found in the corresponding      request.  The Hop-by-Hop identifier is normally a monotonically      increasing number, whose start value was randomly generated.  An      answer message that is received with an unknown Hop-by-Hop      Identifier MUST be discarded.   End-to-End Identifier      The End-to-End Identifier is an unsigned 32-bit integer field (in      network byte order) and is used to detect duplicate messages.      Upon reboot implementations MAY set the high order 12 bits to      contain the low order 12 bits of current time, and the low order      20 bits to a random value.  Senders of request messages MUST      insert a unique identifier on each message.  The identifier MUST      remain locally unique for a period of at least 4 minutes, even      across reboots.  The originator of an Answer message MUST ensure      that the End-to-End Identifier field contains the same value that      was found in the corresponding request.  The End-to-End Identifier      MUST NOT be modified by Diameter agents of any kind.  The      combination of the Origin-Host (seeSection 6.3) and this field is      used to detect duplicates.  Duplicate requests SHOULD cause the      same answer to be transmitted (modulo the hop-by-hop Identifier      field and any routing AVPs that may be present), and MUST NOT      affect any state that was set when the original request was      processed.  Duplicate answer messages that are to be locally      consumed (seeSection 6.2) SHOULD be silently discarded.   AVPs      AVPs are a method of encapsulating information relevant to the      Diameter message.  SeeSection 4 for more information on AVPs.Calhoun, et al.             Standards Track                    [Page 34]

RFC 3588                Diameter Based Protocol           September 20033.1.  Command Codes   Each command Request/Answer pair is assigned a command code, and the   sub-type (i.e., request or answer) is identified via the 'R' bit in   the Command Flags field of the Diameter header.   Every Diameter message MUST contain a command code in its header's   Command-Code field, which is used to determine the action that is to   be taken for a particular message.  The following Command Codes are   defined in the Diameter base protocol:   Command-Name             Abbrev.    Code       Reference   --------------------------------------------------------   Abort-Session-Request     ASR       274           8.5.1   Abort-Session-Answer      ASA       274           8.5.2   Accounting-Request        ACR       271           9.7.1   Accounting-Answer         ACA       271           9.7.2   Capabilities-Exchange-    CER       257           5.3.1      Request   Capabilities-Exchange-    CEA       257           5.3.2      Answer   Device-Watchdog-Request   DWR       280           5.5.1   Device-Watchdog-Answer    DWA       280           5.5.2   Disconnect-Peer-Request   DPR       282           5.4.1   Disconnect-Peer-Answer    DPA       282           5.4.2   Re-Auth-Request           RAR       258           8.3.1   Re-Auth-Answer            RAA       258           8.3.2   Session-Termination-      STR       275           8.4.1      Request   Session-Termination-      STA       275           8.4.2      AnswerCalhoun, et al.             Standards Track                    [Page 35]

RFC 3588                Diameter Based Protocol           September 20033.2.  Command Code ABNF specification   Every Command Code defined MUST include a corresponding ABNF   specification, which is used to define the AVPs that MUST or MAY be   present.  The following format is used in the definition:   command-def      = command-name "::=" diameter-message   command-name     = diameter-name   diameter-name    = ALPHA *(ALPHA / DIGIT / "-")   diameter-message = header  [ *fixed] [ *required] [ *optional]                      [ *fixed]   header           = "<" Diameter-Header:" command-id                      [r-bit] [p-bit] [e-bit] [application-id]">"   application-id   = 1*DIGIT   command-id       = 1*DIGIT                      ; The Command Code assigned to the command   r-bit            = ", REQ"                      ; If present, the 'R' bit in the Command                      ; Flags is set, indicating that the message                      ; is a request, as opposed to an answer.   p-bit            = ", PXY"                      ; If present, the 'P' bit in the Command                      ; Flags is set, indicating that the message                      ; is proxiable.   e-bit            = ", ERR"                      ; If present, the 'E' bit in the Command                      ; Flags is set, indicating that the answer                      ; message contains a Result-Code AVP in                      ; the "protocol error" class.   fixed            = [qual] "<" avp-spec ">"                      ; Defines the fixed position of an AVP   required         = [qual] "{" avp-spec "}"                      ; The AVP MUST be present and can appear                      ; anywhere in the message.Calhoun, et al.             Standards Track                    [Page 36]

RFC 3588                Diameter Based Protocol           September 2003   optional         = [qual] "[" avp-name "]"                      ; The avp-name in the 'optional' rule cannot                      ; evaluate to any AVP Name which is included                      ; in a fixed or required rule.  The AVP can                      ; appear anywhere in the message.   qual             = [min] "*" [max]                      ; See ABNF conventions,RFC 2234 Section 6.6.                      ; The absence of any qualifiers depends on whether                      ; it precedes a fixed, required, or optional                      ; rule.  If a fixed or required rule has no                      ; qualifier, then exactly one such AVP MUST                      ; be present.  If an optional rule has no                      ; qualifier, then 0 or 1 such AVP may be                      ; present.                      ;                      ; NOTE:  "[" and "]" have a different meaning                      ; than in ABNF (see the optional rule, above).                      ; These braces cannot be used to express                      ; optional fixed rules (such as an optional                      ; ICV at the end).  To do this, the convention                      ; is '0*1fixed'.   min              = 1*DIGIT                      ; The minimum number of times the element may                      ; be present.  The default value is zero.   max              = 1*DIGIT                      ; The maximum number of times the element may                      ; be present.  The default value is infinity.  A                      ; value of zero implies the AVP MUST NOT be                      ; present.   avp-spec         = diameter-name                      ; The avp-spec has to be an AVP Name, defined                      ; in the base or extended Diameter                      ; specifications.   avp-name         = avp-spec / "AVP"                      ; The string "AVP" stands for *any* arbitrary                      ; AVP Name, which does not conflict with the                      ; required or fixed position AVPs defined in                      ; the command code definition.Calhoun, et al.             Standards Track                    [Page 37]

RFC 3588                Diameter Based Protocol           September 2003   The following is a definition of a fictitious command code:   Example-Request ::= < "Diameter-Header: 9999999, REQ, PXY >                       { User-Name }                     * { Origin-Host }                     * [ AVP3.3.  Diameter Command Naming Conventions   Diameter command names typically includes one or more English words   followed by the verb Request or Answer.  Each English word is   delimited by a hyphen.  A three-letter acronym for both the request   and answer is also normally provided.   An example is a message set used to terminate a session.  The command   name is Session-Terminate-Request and Session-Terminate-Answer, while   the acronyms are STR and STA, respectively.   Both the request and the answer for a given command share the same   command code.  The request is identified by the R(equest) bit in the   Diameter header set to one (1), to ask that a particular action be   performed, such as authorizing a user or terminating a session.  Once   the receiver has completed the request it issues the corresponding   answer, which includes a result code that communicates one of the   following:   -  The request was successful   -  The request failed   -  An additional request must be sent to provide information the peer      requires prior to returning a successful or failed answer.   -  The receiver could not process the request, but provides      information about a Diameter peer that is able to satisfy the      request, known as redirect.   Additional information, encoded within AVPs, MAY also be included in   answer  messages.4.  Diameter AVPs   Diameter AVPs carry specific authentication, accounting,   authorization, routing and security information as well as   configuration details for the request and reply.   Some AVPs MAY be listed more than once.  The effect of such an AVP is   specific, and is specified in each case by the AVP description.Calhoun, et al.             Standards Track                    [Page 38]

RFC 3588                Diameter Based Protocol           September 2003   Each AVP of type OctetString MUST be padded to align on a 32-bit   boundary, while other AVP types align naturally.  A number of zero-   valued bytes are added to the end of the AVP Data field till a word   boundary is reached.  The length of the padding is not reflected in   the AVP Length field.4.1.  AVP Header   The fields in the AVP header MUST be sent in network byte order.  The   format of the header is:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                           AVP Code                            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |V M P r r r r r|                  AVP Length                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        Vendor-ID (opt)                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Data ...   +-+-+-+-+-+-+-+-+   AVP Code      The AVP Code, combined with the Vendor-Id field, identifies the      attribute uniquely.  AVP numbers 1 through 255 are reserved for      backward compatibility with RADIUS, without setting the Vendor-Id      field.  AVP numbers 256 and above are used for Diameter, which are      allocated by IANA (seeSection 11.1).   AVP Flags      The AVP Flags field informs the receiver how each attribute must      be handled.  The 'r' (reserved) bits are unused and SHOULD be set      to 0.  Note that subsequent Diameter applications MAY define      additional bits within the AVP Header, and an unrecognized bit      SHOULD be considered an error.  The 'P' bit indicates the need for      encryption for end-to-end security.      The 'M' Bit, known as the Mandatory bit, indicates whether support      of the AVP is required.  If an AVP with the 'M' bit set is      received by a Diameter client, server, proxy, or translation agent      and either the AVP or its value is unrecognized, the message MUST      be rejected.  Diameter Relay and redirect agents MUST NOT reject      messages with unrecognized AVPs.Calhoun, et al.             Standards Track                    [Page 39]

RFC 3588                Diameter Based Protocol           September 2003      The 'M' bit MUST be set according to the rules defined for the AVP      containing it.  In order to preserve interoperability, a Diameter      implementation MUST be able to exclude from a Diameter message any      Mandatory AVP which is neither defined in the base Diameter      protocol nor in any of the Diameter Application specifications      governing the message in which it appears.  It MAY do this in one      of the following ways:      1) If a message is rejected because it contains a Mandatory AVP         which is neither defined in the base Diameter standard nor in         any of the Diameter Application specifications governing the         message in which it appears, the implementation may resend the         message without the AVP, possibly inserting additional standard         AVPs instead.      2) A configuration option may be provided on a system wide, per         peer, or per realm basis that would allow/prevent particular         Mandatory AVPs to be sent.  Thus an administrator could change         the configuration to avoid interoperability problems.      Diameter implementations are required to support all Mandatory      AVPs which are allowed by the message's formal syntax and defined      either in the base Diameter standard or in one of the Diameter      Application specifications governing the message.      AVPs with the 'M' bit cleared are informational only and a      receiver that receives a message with such an AVP that is not      supported, or whose value is not supported, MAY simply ignore the      AVP.      The 'V' bit, known as the Vendor-Specific bit, indicates whether      the optional Vendor-ID field is present in the AVP header.  When      set the AVP Code belongs to the specific vendor code address      space.      Unless otherwise noted, AVPs will have the following default AVP      Flags field settings:         The 'M' bit MUST be set.  The 'V' bit MUST NOT be set.   AVP Length      The AVP Length field is three octets, and indicates the number of      octets in this AVP including the AVP Code, AVP Length, AVP Flags,      Vendor-ID field (if present) and the AVP data.  If a message is      received with an invalid attribute length, the message SHOULD be      rejected.Calhoun, et al.             Standards Track                    [Page 40]

RFC 3588                Diameter Based Protocol           September 20034.1.1.  Optional Header Elements   The AVP Header contains one optional field.  This field is only   present if the respective bit-flag is enabled.   Vendor-ID      The Vendor-ID field is present if the 'V' bit is set in the AVP      Flags field.  The optional four-octet Vendor-ID field contains the      IANA assigned "SMI Network Management Private Enterprise Codes"      [ASSIGNNO] value, encoded in network byte order.  Any vendor      wishing to implement a vendor-specific Diameter AVP MUST use their      own Vendor-ID along with their privately managed AVP address      space, guaranteeing that they will not collide with any other      vendor's vendor-specific AVP(s), nor with future IETF      applications.      A vendor ID value of zero (0) corresponds to the IETF adopted AVP      values, as managed by the IANA.  Since the absence of the vendor      ID field implies that the AVP in question is not vendor specific,      implementations MUST NOT use the zero (0) vendor ID.4.2.  Basic AVP Data Formats   The Data field is zero or more octets and contains information   specific to the Attribute.  The format and length of the Data field   is determined by the AVP Code and AVP Length fields.  The format of   the Data field MUST be one of the following base data types or a data   type derived from the base data types.  In the event that a new Basic   AVP Data Format is needed, a new version of this RFC must be created.   OctetString      The data contains arbitrary data of variable length.  Unless      otherwise noted, the AVP Length field MUST be set to at least 8      (12 if the 'V' bit is enabled).  AVP Values of this type that are      not a multiple of four-octets in length is followed by the      necessary padding so that the next AVP (if any) will start on a      32-bit boundary.   Integer32      32 bit signed value, in network byte order.  The AVP Length field      MUST be set to 12 (16 if the 'V' bit is enabled).   Integer64      64 bit signed value, in network byte order.  The AVP Length field      MUST be set to 16 (20 if the 'V' bit is enabled).Calhoun, et al.             Standards Track                    [Page 41]

RFC 3588                Diameter Based Protocol           September 2003   Unsigned32      32 bit unsigned value, in network byte order.  The AVP Length      field MUST be set to 12 (16 if the 'V' bit is enabled).   Unsigned64      64 bit unsigned value, in network byte order.  The AVP Length      field MUST be set to 16 (20 if the 'V' bit is enabled).   Float32      This represents floating point values of single precision as      described by [FLOATPOINT].  The 32-bit value is transmitted in      network byte order.  The AVP Length field MUST be set to 12 (16 if      the 'V' bit is enabled).   Float64      This represents floating point values of double precision as      described by [FLOATPOINT].  The 64-bit value is transmitted in      network byte order.  The AVP Length field MUST be set to 16 (20 if      the 'V' bit is enabled).   Grouped      The Data field is specified as a sequence of AVPs.  Each of these      AVPs follows - in the order in which they are specified -      including their headers and padding.  The AVP Length field is set      to 8 (12 if the 'V' bit is enabled) plus the total length of all      included AVPs, including their headers and padding.  Thus the AVP      length field of an AVP of type Grouped is always a multiple of 4.4.3.  Derived AVP Data Formats   In addition to using the Basic AVP Data Formats, applications may   define data formats derived from the Basic AVP Data Formats.  An   application that defines new AVP Derived Data Formats MUST include   them in a section entitled "AVP Derived Data Formats", using the same   format as the definitions below.  Each new definition must be either   defined or listed with a reference to the RFC that defines the   format.   The below AVP Derived Data Formats are commonly used by applications.   Address      The Address format is derived from the OctetString AVP Base      Format.  It is a discriminated union, representing, for example a      32-bit (IPv4) [IPV4] or 128-bit (IPv6) [IPV6] address, most      significant octet first.  The first two octets of the AddressCalhoun, et al.             Standards Track                    [Page 42]

RFC 3588                Diameter Based Protocol           September 2003      AVP represents the AddressType, which contains an Address Family      defined in [IANAADFAM].  The AddressType is used to discriminate      the content and format of the remaining octets.   Time      The Time format is derived from the OctetString AVP Base Format.      The string MUST contain four octets, in the same format as the      first four bytes are in the NTP timestamp format.  The NTP      Timestamp format is defined in chapter 3 of [SNTP].      This represents the number of seconds since 0h on 1 January 1900      with respect to the Coordinated Universal Time (UTC).      On 6h 28m 16s UTC, 7 February 2036 the time value will overflow.      SNTP [SNTP] describes a procedure to extend the time to 2104.      This procedure MUST be supported by all DIAMETER nodes.   UTF8String      The UTF8String format is derived from the OctetString AVP Base      Format.  This is a human readable string represented using the      ISO/IEC IS 10646-1 character set, encoded as an OctetString using      the UTF-8 [UFT8] transformation format described inRFC 2279.      Since additional code points are added by amendments to the 10646      standard from time to time, implementations MUST be prepared to      encounter any code point from 0x00000001 to 0x7fffffff.  Byte      sequences that do not correspond to the valid encoding of a code      point into UTF-8 charset or are outside this range are prohibited.      The use of control codes SHOULD be avoided.  When it is necessary      to represent a new line, the control code sequence CR LF SHOULD be      used.      The use of leading or trailing white space SHOULD be avoided.      For code points not directly supported by user interface hardware      or software, an alternative means of entry and display, such as      hexadecimal, MAY be provided.      For information encoded in 7-bit US-ASCII, the UTF-8 charset is      identical to the US-ASCII charset.      UTF-8 may require multiple bytes to represent a single character /      code point; thus the length of an UTF8String in octets may be      different from the number of characters encoded.      Note that the AVP Length field of an UTF8String is measured in      octets, not characters.Calhoun, et al.             Standards Track                    [Page 43]

RFC 3588                Diameter Based Protocol           September 2003   DiameterIdentity      The DiameterIdentity format is derived from the OctetString AVP      Base Format.         DiameterIdentity  = FQDN      DiameterIdentity value is used to uniquely identify a Diameter      node for purposes of duplicate connection and routing loop      detection.      The contents of the string MUST be the FQDN of the Diameter node.      If multiple Diameter nodes run on the same host, each Diameter      node MUST be assigned a unique DiameterIdentity.  If a Diameter      node can be identified by several FQDNs, a single FQDN should be      picked at startup, and used as the only DiameterIdentity for that      node, whatever the connection it is sent on.   DiameterURI      The DiameterURI MUST follow the Uniform Resource Identifiers (URI)      syntax [URI] rules specified below:      "aaa://" FQDN [ port ] [ transport ] [ protocol ]                      ; No transport security      "aaas://" FQDN [ port ] [ transport ] [ protocol ]                      ; Transport security used      FQDN               = Fully Qualified Host Name      port               = ":" 1*DIGIT                      ; One of the ports used to listen for                      ; incoming connections.                      ; If absent,                      ; the default Diameter port (3868) is                      ; assumed.      transport          = ";transport=" transport-protocol                      ; One of the transports used to listen                      ; for incoming connections.  If absent,                      ; the default SCTP [SCTP] protocol is                      ; assumed.  UDP MUST NOT be used when                      ; the aaa-protocol field is set to                      ; diameter.Calhoun, et al.             Standards Track                    [Page 44]

RFC 3588                Diameter Based Protocol           September 2003      transport-protocol = ( "tcp" / "sctp" / "udp" )      protocol           = ";protocol=" aaa-protocol                      ; If absent, the default AAA protocol                      ; is diameter.      aaa-protocol       = ( "diameter" / "radius" / "tacacs+" )      The following are examples of valid Diameter host identities:      aaa://host.example.com;transport=tcp      aaa://host.example.com:6666;transport=tcp      aaa://host.example.com;protocol=diameter      aaa://host.example.com:6666;protocol=diameter      aaa://host.example.com:6666;transport=tcp;protocol=diameter      aaa://host.example.com:1813;transport=udp;protocol=radius   Enumerated      Enumerated is derived from the Integer32 AVP Base Format.  The      definition contains a list of valid values and their      interpretation and is described in the Diameter application      introducing the AVP.   IPFilterRule      The IPFilterRule format is derived from the OctetString AVP Base      Format.  It uses the ASCII charset.  Packets may be filtered based      on the following information that is associated with it:         Direction                          (in or out)         Source and destination IP address  (possibly masked)         Protocol         Source and destination port        (lists or ranges)         TCP flags         IP fragment flag         IP options         ICMP types      Rules for the appropriate direction are evaluated in order, with      the first matched rule terminating the evaluation.  Each packet is      evaluated once.  If no rule matches, the packet is dropped if the      last rule evaluated was a permit, and passed if the last rule was      a deny.Calhoun, et al.             Standards Track                    [Page 45]

RFC 3588                Diameter Based Protocol           September 2003      IPFilterRule filters MUST follow the format:         action dir proto from src to dst [options]         action       permit - Allow packets that match the rule.                      deny   - Drop packets that match the rule.         dir          "in" is from the terminal, "out" is to the                      terminal.         proto        An IP protocol specified by number.  The "ip"                      keyword means any protocol will match.         src and dst  <address/mask> [ports]                      The <address/mask> may be specified as:                      ipno       An IPv4 or IPv6 number in dotted-                                 quad or canonical IPv6 form.  Only                                 this exact IP number will match the                                 rule.                      ipno/bits  An IP number as above with a mask                                 width of the form 1.2.3.4/24.  In                                 this case, all IP numbers from                                 1.2.3.0 to 1.2.3.255 will match.                                 The bit width MUST be valid for the                                 IP version and the IP number MUST                                 NOT have bits set beyond the mask.                                 For a match to occur, the same IP                                 version must be present in the                                 packet that was used in describing                                 the IP address.  To test for a                                 particular IP version, the bits part                                 can be set to zero.  The keyword                                 "any" is 0.0.0.0/0 or the IPv6                                 equivalent.  The keyword "assigned"                                 is the address or set of addresses                                 assigned to the terminal.  For IPv4,                                 a typical first rule is often "deny                                 in ip! assigned"                      The sense of the match can be inverted by                      preceding an address with the not modifier (!),                      causing all other addresses to be matched                      instead.  This does not affect the selection of                      port numbers.Calhoun, et al.             Standards Track                    [Page 46]

RFC 3588                Diameter Based Protocol           September 2003                      With the TCP, UDP and SCTP protocols, optional                      ports may be specified as:                         {port/port-port}[,ports[,...]]                      The '-' notation specifies a range of ports                      (including boundaries).                      Fragmented packets that have a non-zero offset                      (i.e., not the first fragment) will never match                      a rule that has one or more port                      specifications.  See the frag option for                      details on matching fragmented packets.         options:            frag    Match if the packet is a fragment and this is not                    the first fragment of the datagram.  frag may not                    be used in conjunction with either tcpflags or                    TCP/UDP port specifications.            ipoptions spec                    Match if the IP header contains the comma                    separated list of options specified in spec.  The                    supported IP options are:                    ssrr (strict source route), lsrr (loose source                    route), rr (record packet route) and ts                    (timestamp).  The absence of a particular option                    may be denoted with a '!'.            tcpoptions spec                    Match if the TCP header contains the comma                    separated list of options specified in spec.  The                    supported TCP options are:                    mss (maximum segment size), window (tcp window                    advertisement), sack (selective ack), ts (rfc1323                    timestamp) and cc (rfc1644 t/tcp connection                    count).  The absence of a particular option may                    be denoted with a '!'.            established                    TCP packets only.  Match packets that have the RST                    or ACK bits set.            setup   TCP packets only.  Match packets that have the SYN                    bit set but no ACK bit.Calhoun, et al.             Standards Track                    [Page 47]

RFC 3588                Diameter Based Protocol           September 2003            tcpflags spec                    TCP packets only.  Match if the TCP header                    contains the comma separated list of flags                    specified in spec.  The supported TCP flags are:                    fin, syn, rst, psh, ack and urg.  The absence of a                    particular flag may be denoted with a '!'.  A rule                    that contains a tcpflags specification can never                    match a fragmented packet that has a non-zero                    offset.  See the frag option for details on                    matching fragmented packets.            icmptypes types                    ICMP packets only.  Match if the ICMP type is in                    the list types.  The list may be specified as any                    combination of ranges or individual types                    separated by commas.  Both the numeric values and                    the symbolic values listed below can be used.  The                    supported ICMP types are:                    echo reply (0), destination unreachable (3),                    source quench (4), redirect (5), echo request                    (8), router advertisement (9), router                    solicitation (10), time-to-live exceeded (11), IP                    header bad (12), timestamp request (13),                    timestamp reply (14), information request (15),                    information reply (16), address mask request (17)                    and address mask reply (18).   There is one kind of packet that the access device MUST always   discard, that is an IP fragment with a fragment offset of one. This   is a valid packet, but it only has one use, to try to circumvent   firewalls.      An access device that is unable to interpret or apply a deny rule      MUST terminate the session.  An access device that is unable to      interpret or apply a permit rule MAY apply a more restrictive      rule.  An access device MAY apply deny rules of its own before the      supplied rules, for example to protect the access device owner's      infrastructure.   The rule syntax is a modified subset of ipfw(8) from FreeBSD, and the   ipfw.c code may provide a useful base for implementations.Calhoun, et al.             Standards Track                    [Page 48]

RFC 3588                Diameter Based Protocol           September 2003   QoSFilterRule      The QosFilterRule format is derived from the OctetString AVP Base      Format.  It uses the ASCII charset.  Packets may be marked or      metered based on the following information that is associated with      it:         Direction                          (in or out)         Source and destination IP address  (possibly masked)         Protocol         Source and destination port        (lists or ranges)         DSCP values                        (no mask or range)      Rules for the appropriate direction are evaluated in order, with      the first matched rule terminating the evaluation.  Each packet is      evaluated once.  If no rule matches, the packet is treated as best      effort.  An access device that is unable to interpret or apply a      QoS rule SHOULD NOT terminate the session.   QoSFilterRule filters MUST follow the format:   action dir proto from src to dst [options]                tag    - Mark packet with a specific DSCP                         [DIFFSERV].  The DSCP option MUST be                         included.                meter  - Meter traffic.  The metering options                         MUST be included.   dir          The format is as described under IPFilterRule.                proto        The format is as described under                IPFilterRule.                src and dst  The format is as described under                IPFilterRule.4.4.  Grouped AVP Values   The Diameter protocol allows AVP values of type 'Grouped.'  This   implies that the Data field is actually a sequence of AVPs.  It is   possible to include an AVP with a Grouped type within a Grouped type,   that is, to nest them.  AVPs within an AVP of type Grouped have the   same padding requirements as non-Grouped AVPs, as defined inSection4.Calhoun, et al.             Standards Track                    [Page 49]

RFC 3588                Diameter Based Protocol           September 2003   The AVP Code numbering space of all AVPs included in a Grouped AVP is   the same as for non-grouped AVPs.  Further, if any of the AVPs   encapsulated within a Grouped AVP has the 'M' (mandatory) bit set,   the Grouped AVP itself MUST also include the 'M' bit set.   Every Grouped AVP defined MUST include a corresponding grammar, using   ABNF [ABNF] (with modifications), as defined below.      grouped-avp-def  = name "::=" avp      name-fmt         = ALPHA *(ALPHA / DIGIT / "-")      name             = name-fmt                         ; The name has to be the name of an AVP,                         ; defined in the base or extended Diameter                         ; specifications.      avp              = header  [ *fixed] [ *required] [ *optional]                         [ *fixed]      header           = "<" "AVP-Header:" avpcode [vendor] ">"      avpcode          = 1*DIGIT                         ; The AVP Code assigned to the Grouped AVP      vendor           = 1*DIGIT                         ; The Vendor-ID assigned to the Grouped AVP.                         ; If absent, the default value of zero is                         ; used.4.4.1.  Example AVP with a Grouped Data type   The Example-AVP (AVP Code 999999) is of type Grouped and is used to   clarify how Grouped AVP values work.  The Grouped Data field has the   following ABNF grammar:      Example-AVP  ::= < AVP Header: 999999 >                       { Origin-Host }                     1*{ Session-Id }                      *[ AVP ]   An Example-AVP with Grouped Data follows.   The Origin-Host AVP is required (Section 6.3).  In this case:      Origin-Host = "example.com".Calhoun, et al.             Standards Track                    [Page 50]

RFC 3588                Diameter Based Protocol           September 2003   One or more Session-Ids must follow.  Here there are two:      Session-Id =        "grump.example.com:33041;23432;893;0AF3B81"      Session-Id =        "grump.example.com:33054;23561;2358;0AF3B82"   optional AVPs included are      Recovery-Policy = <binary>         2163bc1d0ad82371f6bc09484133c3f09ad74a0dd5346d54195a7cf0b35         2cabc881839a4fdcfbc1769e2677a4c1fb499284c5f70b48f58503a45c5         c2d6943f82d5930f2b7c1da640f476f0e9c9572a50db8ea6e51e1c2c7bd         f8bb43dc995144b8dbe297ac739493946803e1cee3e15d9b765008a1b2a         cf4ac777c80041d72c01e691cf751dbf86e85f509f3988e5875dc905119         26841f00f0e29a6d1ddc1a842289d440268681e052b30fb638045f7779c         1d873c784f054f688f5001559ecff64865ef975f3e60d2fd7966b8c7f92      Futuristic-Acct-Record = <binary>         fe19da5802acd98b07a5b86cb4d5d03f0314ab9ef1ad0b67111ff3b90a0         57fe29620bf3585fd2dd9fcc38ce62f6cc208c6163c008f4258d1bc88b8         17694a74ccad3ec69269461b14b2e7a4c111fb239e33714da207983f58c         41d018d56fe938f3cbf089aac12a912a2f0d1923a9390e5f789cb2e5067         d3427475e49968f841   The data for the optional AVPs is represented in hex since the format   of these AVPs is neither known at the time of definition of the   Example-AVP group, nor (likely) at the time when the example instance   of this AVP is interpreted - except by Diameter implementations which   support the same set of AVPs.  The encoding example illustrates how   padding is used and how length fields are calculated.  Also note that   AVPs may be present in the Grouped AVP value which the receiver   cannot interpret (here, the Recover-Policy and Futuristic-Acct-Record   AVPs).Calhoun, et al.             Standards Track                    [Page 51]

RFC 3588                Diameter Based Protocol           September 2003   This AVP would be encoded as follows:           0       1       2       3       4       5       6       7       +-------+-------+-------+-------+-------+-------+-------+-------+     0 |     Example AVP Header (AVP Code = 999999), Length = 468      |       +-------+-------+-------+-------+-------+-------+-------+-------+     8 |     Origin-Host AVP Header (AVP Code = 264), Length = 19      |       +-------+-------+-------+-------+-------+-------+-------+-------+    16 |  'e'  |  'x'  |  'a'  |  'm'  |  'p'  |  'l'  |  'e'  |  '.'  |       +-------+-------+-------+-------+-------+-------+-------+-------+    24 |  'c'  |  'o'  |  'm'  |Padding|     Session-Id AVP Header     |       +-------+-------+-------+-------+-------+-------+-------+-------+    32 | (AVP Code = 263), Length = 50 |  'g'  |  'r'  |  'u'  |  'm'  |       +-------+-------+-------+-------+-------+-------+-------+-------+                                     . . .       +-------+-------+-------+-------+-------+-------+-------+-------+    64 |  'A'  |  'F'  |  '3'  |  'B'  |  '8'  |  '1'  |Padding|Padding|       +-------+-------+-------+-------+-------+-------+-------+-------+    72 |     Session-Id AVP Header (AVP Code = 263), Length = 51       |       +-------+-------+-------+-------+-------+-------+-------+-------+    80 |  'g'  |  'r'  |  'u'  |  'm'  |  'p'  |  '.'  |  'e'  |  'x'  |       +-------+-------+-------+-------+-------+-------+-------+-------+                                     . . .       +-------+-------+-------+-------+-------+-------+-------+-------+   104 |  '0'  |  'A'  |  'F'  |  '3'  |  'B'  |  '8'  |  '2'  |Padding|       +-------+-------+-------+-------+-------+-------+-------+-------+   112 |   Recovery-Policy Header (AVP Code = 8341), Length = 223      |       +-------+-------+-------+-------+-------+-------+-------+-------+   120 |  0x21 | 0x63  | 0xbc  | 0x1d  | 0x0a  | 0xd8  | 0x23  | 0x71  |       +-------+-------+-------+-------+-------+-------+-------+-------+                                     . . .       +-------+-------+-------+-------+-------+-------+-------+-------+   320 |  0x2f | 0xd7  | 0x96  | 0x6b  | 0x8c  | 0x7f  | 0x92  |Padding|       +-------+-------+-------+-------+-------+-------+-------+-------+   328 | Futuristic-Acct-Record Header (AVP Code = 15930), Length = 137|       +-------+-------+-------+-------+-------+-------+-------+-------+   336 |  0xfe | 0x19  | 0xda  | 0x58  | 0x02  | 0xac  | 0xd9  | 0x8b  |       +-------+-------+-------+-------+-------+-------+-------+-------+                                     . . .       +-------+-------+-------+-------+-------+-------+-------+-------+   464 |  0x41 |Padding|Padding|Padding|       +-------+-------+-------+-------+Calhoun, et al.             Standards Track                    [Page 52]

RFC 3588                Diameter Based Protocol           September 20034.5.  Diameter Base Protocol AVPs   The following table describes the Diameter AVPs defined in the base   protocol, their AVP Code values, types, possible flag values and   whether the AVP MAY be encrypted.  For the originator of a Diameter   message, "Encr" (Encryption) means that if a message containing that   AVP is to be sent via a  Diameter agent (proxy, redirect or relay)   then the message MUST NOT be sent unless there is end-to-end security   between the originator and the recipient and integrity /   confidentiality protection is offered for this AVP OR the originator   has locally trusted configuration that indicates that end-to-end   security is not needed.  Similarly, for the originator of a Diameter   message, a "P" in the "MAY" column means that if a message containing   that AVP is to be sent via a  Diameter agent (proxy, redirect or   relay) then the message MUST NOT be sent unless there is end-to-end   security between the originator and the recipient or the originator   has locally trusted configuration that indicates that end-to-end   security is not needed.   Due to space constraints, the short form DiamIdent is used to   represent DiameterIdentity.Calhoun, et al.             Standards Track                    [Page 53]

RFC 3588                Diameter Based Protocol           September 2003                                            +---------------------+                                            |    AVP Flag rules   |                                            |----+-----+----+-----|----+                   AVP  Section             |    |     |SHLD| MUST|    |   Attribute Name  Code Defined  Data Type  |MUST| MAY | NOT|  NOT|Encr|   -----------------------------------------|----+-----+----+-----|----|   Acct-             85  9.8.2   Unsigned32 | M  |  P  |    |  V  | Y  |     Interim-Interval                       |    |     |    |     |    |   Accounting-      483  9.8.7   Enumerated | M  |  P  |    |  V  | Y  |     Realtime-Required                      |    |     |    |     |    |   Acct-            50   9.8.5   UTF8String | M  |  P  |    |  V  | Y  |     Multi-Session-Id                       |    |     |    |     |    |   Accounting-      485  9.8.3   Unsigned32 | M  |  P  |    |  V  | Y  |     Record-Number                          |    |     |    |     |    |   Accounting-      480  9.8.1   Enumerated | M  |  P  |    |  V  | Y  |     Record-Type                            |    |     |    |     |    |   Accounting-       44  9.8.4   OctetString| M  |  P  |    |  V  | Y  |    Session-Id                              |    |     |    |     |    |   Accounting-      287  9.8.6   Unsigned64 | M  |  P  |    |  V  | Y  |     Sub-Session-Id                         |    |     |    |     |    |   Acct-            259  6.9     Unsigned32 | M  |  P  |    |  V  | N  |     Application-Id                         |    |     |    |     |    |   Auth-            258  6.8     Unsigned32 | M  |  P  |    |  V  | N  |     Application-Id                         |    |     |    |     |    |   Auth-Request-    274  8.7     Enumerated | M  |  P  |    |  V  | N  |      Type                                  |    |     |    |     |    |   Authorization-   291  8.9     Unsigned32 | M  |  P  |    |  V  | N  |     Lifetime                               |    |     |    |     |    |   Auth-Grace-      276  8.10    Unsigned32 | M  |  P  |    |  V  | N  |     Period                                 |    |     |    |     |    |   Auth-Session-    277  8.11    Enumerated | M  |  P  |    |  V  | N  |     State                                  |    |     |    |     |    |   Re-Auth-Request- 285  8.12    Enumerated | M  |  P  |    |  V  | N  |     Type                                   |    |     |    |     |    |   Class             25  8.20    OctetString| M  |  P  |    |  V  | Y  |   Destination-Host 293  6.5     DiamIdent  | M  |  P  |    |  V  | N  |   Destination-     283  6.6     DiamIdent  | M  |  P  |    |  V  | N  |     Realm                                  |    |     |    |     |    |   Disconnect-Cause 273  5.4.3   Enumerated | M  |  P  |    |  V  | N  |   E2E-Sequence AVP 300  6.15    Grouped    | M  |  P  |    |  V  | Y  |   Error-Message    281  7.3     UTF8String |    |  P  |    | V,M | N  |   Error-Reporting- 294  7.4     DiamIdent  |    |  P  |    | V,M | N  |     Host                                   |    |     |    |     |    |   Event-Timestamp   55  8.21    Time       | M  |  P  |    |  V  | N  |   Experimental-    297  7.6     Grouped    | M  |  P  |    |  V  | N  |      Result                                |    |     |    |     |    |   -----------------------------------------|----+-----+----+-----|----|Calhoun, et al.             Standards Track                    [Page 54]

RFC 3588                Diameter Based Protocol           September 2003                                            +---------------------+                                            |    AVP Flag rules   |                                            |----+-----+----+-----|----+                   AVP  Section             |    |     |SHLD| MUST|MAY |   Attribute Name  Code Defined  Data Type  |MUST| MAY | NOT|  NOT|Encr|   -----------------------------------------|----+-----+----+-----|----|   Experimental-    298  7.7     Unsigned32 | M  |  P  |    |  V  | N  |      Result-Code                           |    |     |    |     |    |   Failed-AVP       279  7.5     Grouped    | M  |  P  |    |  V  | N  |   Firmware-        267  5.3.4   Unsigned32 |    |     |    |P,V,M| N  |     Revision                               |    |     |    |     |    |   Host-IP-Address  257  5.3.5   Address    | M  |  P  |    |  V  | N  |   Inband-Security                          | M  |  P  |    |  V  | N  |      -Id           299  6.10    Unsigned32 |    |     |    |     |    |   Multi-Round-     272  8.19    Unsigned32 | M  |  P  |    |  V  | Y  |     Time-Out                               |    |     |    |     |    |   Origin-Host      264  6.3     DiamIdent  | M  |  P  |    |  V  | N  |   Origin-Realm     296  6.4     DiamIdent  | M  |  P  |    |  V  | N  |   Origin-State-Id  278  8.16    Unsigned32 | M  |  P  |    |  V  | N  |   Product-Name     269  5.3.7   UTF8String |    |     |    |P,V,M| N  |   Proxy-Host       280  6.7.3   DiamIdent  | M  |     |    | P,V | N  |   Proxy-Info       284  6.7.2   Grouped    | M  |     |    | P,V | N  |   Proxy-State       33  6.7.4   OctetString| M  |     |    | P,V | N  |   Redirect-Host    292  6.12    DiamURI    | M  |  P  |    |  V  | N  |   Redirect-Host-   261  6.13    Enumerated | M  |  P  |    |  V  | N  |      Usage                                 |    |     |    |     |    |   Redirect-Max-    262  6.14    Unsigned32 | M  |  P  |    |  V  | N  |      Cache-Time                            |    |     |    |     |    |   Result-Code      268  7.1     Unsigned32 | M  |  P  |    |  V  | N  |   Route-Record     282  6.7.1   DiamIdent  | M  |     |    | P,V | N  |   Session-Id       263  8.8     UTF8String | M  |  P  |    |  V  | Y  |   Session-Timeout   27  8.13    Unsigned32 | M  |  P  |    |  V  | N  |   Session-Binding  270  8.17    Unsigned32 | M  |  P  |    |  V  | Y  |   Session-Server-  271  8.18    Enumerated | M  |  P  |    |  V  | Y  |     Failover                               |    |     |    |     |    |   Supported-       265  5.3.6   Unsigned32 | M  |  P  |    |  V  | N  |     Vendor-Id                              |    |     |    |     |    |   Termination-     295  8.15    Enumerated | M  |  P  |    |  V  | N  |      Cause                                 |    |     |    |     |    |   User-Name          1  8.14    UTF8String | M  |  P  |    |  V  | Y  |   Vendor-Id        266  5.3.3   Unsigned32 | M  |  P  |    |  V  | N  |   Vendor-Specific- 260  6.11    Grouped    | M  |  P  |    |  V  | N  |      Application-Id                        |    |     |    |     |    |   -----------------------------------------|----+-----+----+-----|----|Calhoun, et al.             Standards Track                    [Page 55]

RFC 3588                Diameter Based Protocol           September 20035.  Diameter Peers   This section describes how Diameter nodes establish connections and   communicate with peers.5.1.  Peer Connections   Although a Diameter node may have many possible peers that it is able   to communicate with, it may not be economical to have an established   connection to all of them.  At a minimum, a Diameter node SHOULD have   an established connection with two peers per realm, known as the   primary and secondary peers.  Of course, a node MAY have additional   connections, if it is deemed necessary.  Typically, all messages for   a realm are sent to the primary peer, but in the event that failover   procedures are invoked, any pending requests are sent to the   secondary peer.  However, implementations are free to load balance   requests between a set of peers.   Note that a given peer MAY act as a primary for a given realm, while   acting as a secondary for another realm.   When a peer is deemed suspect, which could occur for various reasons,   including not receiving a DWA within an allotted timeframe, no new   requests should be forwarded to the peer, but failover procedures are   invoked.  When an active peer is moved to this mode, additional   connections SHOULD be established to ensure that the necessary number   of active connections exists.   There are two ways that a peer is removed from the suspect peer list:   1. The peer is no longer reachable, causing the transport connection      to be shutdown.  The peer is moved to the closed state.   2. Three watchdog messages are exchanged with accepted round trip      times, and the connection to the peer is considered stabilized.      In the event the peer being removed is either the primary or      secondary, an alternate peer SHOULD replace the deleted peer, and      assume the role of either primary or secondary.5.2.  Diameter Peer Discovery   Allowing for dynamic Diameter agent discovery will make it possible   for simpler and more robust deployment of Diameter services.  In   order to promote interoperable implementations of Diameter peer   discovery, the following mechanisms are described.  These are basedCalhoun, et al.             Standards Track                    [Page 56]

RFC 3588                Diameter Based Protocol           September 2003   on existing IETF standards.  The first option (manual configuration)   MUST be supported by all DIAMETER nodes, while the latter two options   (SRVLOC and DNS) MAY be supported.   There are two cases where Diameter peer discovery may be performed.   The first is when a Diameter client needs to discover a first-hop   Diameter agent.  The second case is when a Diameter agent needs to   discover another agent - for further handling of a Diameter   operation.  In both cases, the following 'search order' is   recommended:   1. The Diameter implementation consults its list of static (manually)      configured Diameter agent locations.  These will be used if they      exist and respond.   2. The Diameter implementation uses SLPv2 [SLP] to discover Diameter      services.  The Diameter service template [TEMPLATE] is included inAppendix A.      It is recommended that SLPv2 security be deployed (this requires      distributing keys to SLPv2 agents).  This is discussed further inAppendix A.  SLPv2 security SHOULD be used (requiring distribution      of keys to SLPv2 agents) in order to ensure that discovered peers      are authorized for their roles.  SLPv2 is discussed further inAppendix A.   3. The Diameter implementation performs a NAPTR query for a server in      a particular realm.  The Diameter implementation has to know in      advance which realm to look for a Diameter agent in.  This could      be deduced, for example, from the 'realm' in a NAI that a Diameter      implementation needed to perform a Diameter operation on.      3.1 The services relevant for the task of transport protocol          selection are those with NAPTR service fields with values          "AAA+D2x", where x is a letter that corresponds to a transport          protocol supported by the domain.  This specification defines          D2T for TCP and D2S for SCTP.  We also establish an IANA          registry for NAPTR service name to transport protocol          mappings.          These NAPTR records provide a mapping from a domain, to the          SRV record for contacting a server with the specific transport          protocol in the NAPTR services field.  The resource record          will contain an empty regular expression and a replacement          value, which is the SRV record for that particular transport          protocol.  If the server supports multiple transport          protocols, there will be multiple NAPTR records, each with a          different service value.  As perRFC 2915 [NAPTR], the clientCalhoun, et al.             Standards Track                    [Page 57]

RFC 3588                Diameter Based Protocol           September 2003          discards any records whose services fields are not applicable.          For the purposes of this specification, several rules are          defined.      3.2 A client MUST discard any service fields that identify a          resolution service whose value is not "D2X", for values of X          that indicate transport protocols supported by the client.          The NAPTR processing as described inRFC 2915 will result in          discovery of the most preferred transport protocol of the          server that is supported by the client, as well as an SRV          record for the server.          The domain suffixes in the NAPTR replacement field SHOULD          match the domain of the original query.   4. If no NAPTR records are found, the requester queries for those      address records for the destination address,      '_diameter._sctp'.realm or '_diameter._tcp'.realm.  Address      records include A RR's, AAAA RR's or other similar records, chosen      according to the requestor's network protocol capabilities.  If      the DNS server returns no address records, the requestor gives up.      If the server is using a site certificate, the domain name in the      query and the domain name in the replacement field MUST both be      valid based on the site certificate handed out by the server in      the TLS or IKE exchange.  Similarly, the domain name in the SRV      query and the domain name in the target in the SRV record MUST      both be valid based on the same site certificate.  Otherwise, an      attacker could modify the DNS records to contain replacement      values in a different domain, and the client could not validate      that this was the desired behavior, or the result of an attack      Also, the Diameter Peer MUST check to make sure that the      discovered peers are authorized to act in its role.      Authentication via IKE or TLS, or validation of DNS RRs via DNSSEC      is not sufficient to conclude this.  For example, a web server may      have obtained a valid TLS certificate, and secured RRs may be      included in the DNS, but this does not imply that it is authorized      to act as a Diameter Server.      Authorization can be achieved for example, by configuration of a      Diameter Server CA.  Alternatively this can be achieved by      definition of OIDs within TLS or IKE certificates so as to signify      Diameter Server authorization.   A dynamically discovered peer causes an entry in the Peer Table (seeSection 2.6) to be created.  Note that entries created via DNS MUST   expire (or be refreshed) within the DNS TTL.  If a peer is discoveredCalhoun, et al.             Standards Track                    [Page 58]

RFC 3588                Diameter Based Protocol           September 2003   outside of the local realm, a routing table entry (seeSection 2.7)   for the peer's realm is created.  The routing table entry's   expiration MUST match the peer's expiration value.5.3.  Capabilities Exchange   When two Diameter peers establish a transport connection, they MUST   exchange the Capabilities Exchange messages, as specified in the peer   state machine (seeSection 5.6).  This message allows the discovery   of a peer's identity and its capabilities (protocol version number,   supported Diameter applications, security mechanisms, etc.)   The receiver only issues commands to its peers that have advertised   support for the Diameter application that defines the command.  A   Diameter node MUST cache the supported applications in order to   ensure that unrecognized commands and/or AVPs are not unnecessarily   sent to a peer.   A receiver of a Capabilities-Exchange-Req (CER) message that does not   have any applications in common with the sender MUST return a   Capabilities-Exchange-Answer (CEA) with the Result-Code AVP set to   DIAMETER_NO_COMMON_APPLICATION, and SHOULD disconnect the transport   layer connection.  Note that receiving a CER or CEA from a peer   advertising itself as a Relay (seeSection 2.4) MUST be interpreted   as having common applications with the peer.   Similarly, a receiver of a Capabilities-Exchange-Req (CER) message   that does not have any security mechanisms in common with the sender   MUST return a Capabilities-Exchange-Answer (CEA) with the Result-Code   AVP set to DIAMETER_NO_COMMON_SECURITY, and SHOULD disconnect the   transport layer connection.   CERs received from unknown peers MAY be silently discarded, or a CEA   MAY be issued with the Result-Code AVP set to DIAMETER_UNKNOWN_PEER.   In both cases, the transport connection is closed.  If the local   policy permits receiving CERs from unknown hosts, a successful CEA   MAY be returned.  If a CER from an unknown peer is answered with a   successful CEA, the lifetime of the peer entry is equal to the   lifetime of the transport connection.  In case of a transport   failure, all the pending transactions destined to the unknown peer   can be discarded.   The CER and CEA messages MUST NOT be proxied, redirected or relayed.   Since the CER/CEA messages cannot be proxied, it is still possible   that an upstream agent receives a message for which it has no   available peers to handle the application that corresponds to the   Command-Code.  In such instances, the 'E' bit is set in the answerCalhoun, et al.             Standards Track                    [Page 59]

RFC 3588                Diameter Based Protocol           September 2003   message (seeSection 7.) with the Result-Code AVP set to   DIAMETER_UNABLE_TO_DELIVER to inform the downstream to take action   (e.g., re-routing request to an alternate peer).   With the exception of the Capabilities-Exchange-Request message, a   message of type Request that includes the Auth-Application-Id or   Acct-Application-Id AVPs, or a message with an application-specific   command code, MAY only be forwarded to a host that has explicitly   advertised support for the application (or has advertised the Relay   Application Identifier).5.3.1.  Capabilities-Exchange-Request   The Capabilities-Exchange-Request (CER), indicated by the Command-   Code set to 257 and the Command Flags' 'R' bit set, is sent to   exchange local capabilities.  Upon detection of a transport failure,   this message MUST NOT be sent to an alternate peer.   When Diameter is run over SCTP [SCTP], which allows for connections   to span multiple interfaces and multiple IP addresses, the   Capabilities-Exchange-Request message MUST contain one Host-IP-   Address AVP for each potential IP address that MAY be locally used   when transmitting Diameter messages.   Message Format      <CER> ::= < Diameter Header: 257, REQ >                { Origin-Host }                { Origin-Realm }             1* { Host-IP-Address }                { Vendor-Id }                { Product-Name }                [ Origin-State-Id ]              * [ Supported-Vendor-Id ]              * [ Auth-Application-Id ]              * [ Inband-Security-Id ]              * [ Acct-Application-Id ]              * [ Vendor-Specific-Application-Id ]                [ Firmware-Revision ]              * [ AVP ]5.3.2.  Capabilities-Exchange-Answer   The Capabilities-Exchange-Answer (CEA), indicated by the Command-Code   set to 257 and the Command Flags' 'R' bit cleared, is sent in   response to a CER message.Calhoun, et al.             Standards Track                    [Page 60]

RFC 3588                Diameter Based Protocol           September 2003   When Diameter is run over SCTP [SCTP], which allows connections to   span multiple interfaces, hence, multiple IP addresses, the   Capabilities-Exchange-Answer message MUST contain one Host-IP-Address   AVP for each potential IP address that MAY be locally used when   transmitting Diameter messages.   Message Format      <CEA> ::= < Diameter Header: 257 >                { Result-Code }                { Origin-Host }                { Origin-Realm }             1* { Host-IP-Address }                { Vendor-Id }                { Product-Name }                [ Origin-State-Id ]                [ Error-Message ]              * [ Failed-AVP ]              * [ Supported-Vendor-Id ]              * [ Auth-Application-Id ]              * [ Inband-Security-Id ]              * [ Acct-Application-Id ]              * [ Vendor-Specific-Application-Id ]                [ Firmware-Revision ]              * [ AVP ]5.3.3.  Vendor-Id AVP   The Vendor-Id AVP (AVP Code 266) is of type Unsigned32 and contains   the IANA "SMI Network Management Private Enterprise Codes" [ASSIGNNO]   value assigned to the vendor of the Diameter application.  In   combination with the Supported-Vendor-Id AVP (Section 5.3.6), this   MAY be used in order to know which vendor specific attributes may be   sent to the peer.  It is also envisioned that the combination of the   Vendor-Id, Product-Name (Section 5.3.7) and the Firmware-Revision   (Section 5.3.4) AVPs MAY provide very useful debugging information.   A Vendor-Id value of zero in the CER or CEA messages is reserved and   indicates that this field is ignored.5.3.4.  Firmware-Revision AVP   The Firmware-Revision AVP (AVP Code 267) is of type Unsigned32 and is   used to inform a Diameter peer of the firmware revision of the   issuing device.Calhoun, et al.             Standards Track                    [Page 61]

RFC 3588                Diameter Based Protocol           September 2003   For devices that do not have a firmware revision (general purpose   computers running Diameter software modules, for instance), the   revision of the Diameter software module may be reported instead.5.3.5.  Host-IP-Address AVP   The Host-IP-Address AVP (AVP Code 257) is of type Address and is used   to inform a Diameter peer of the sender's IP address.  All source   addresses that a Diameter node expects to use with SCTP [SCTP] MUST   be advertised in the CER and CEA messages by including a Host-IP-   Address AVP for each address.  This AVP MUST ONLY be used in the CER   and CEA messages.5.3.6.  Supported-Vendor-Id AVP   The Supported-Vendor-Id AVP (AVP Code 265) is of type Unsigned32 and   contains the IANA "SMI Network Management Private Enterprise Codes"   [ASSIGNNO] value assigned to a vendor other than the device vendor.   This is used in the CER and CEA messages in order to inform the peer   that the sender supports (a subset of) the vendor-specific AVPs   defined by the vendor identified in this AVP.5.3.7.  Product-Name AVP   The Product-Name AVP (AVP Code 269) is of type UTF8String, and   contains the vendor assigned name for the product.  The Product-Name   AVP SHOULD remain constant across firmware revisions for the same   product.5.4.  Disconnecting Peer connections   When a Diameter node disconnects one of its transport connections,   its peer cannot know the reason for the disconnect, and will most   likely assume that a connectivity problem occurred, or that the peer   has rebooted.  In these cases, the peer may periodically attempt to   reconnect, as stated inSection 2.1.  In the event that the   disconnect was a result of either a shortage of internal resources,   or simply that the node in question has no intentions of forwarding   any Diameter messages to the peer in the foreseeable future, a   periodic connection request would not be welcomed.  The   Disconnection-Reason AVP contains the reason the Diameter node issued   the Disconnect-Peer-Request message.   The Disconnect-Peer-Request message is used by a Diameter node to   inform its peer of its intent to disconnect the transport layer, and   that the peer shouldn't reconnect unless it has a valid reason to do   so (e.g., message to be forwarded).  Upon receipt of the message, theCalhoun, et al.             Standards Track                    [Page 62]

RFC 3588                Diameter Based Protocol           September 2003   Disconnect-Peer-Answer is returned, which SHOULD contain an error if   messages have recently been forwarded, and are likely in flight,   which would otherwise cause a race condition.   The receiver of the Disconnect-Peer-Answer initiates the transport   disconnect.5.4.1.  Disconnect-Peer-Request   The Disconnect-Peer-Request (DPR), indicated by the Command-Code set   to 282 and the Command Flags' 'R' bit set, is sent to a peer to   inform its intentions to shutdown the transport connection.  Upon   detection of a transport failure, this message MUST NOT be sent to an   alternate peer.   Message Format      <DPR>  ::= < Diameter Header: 282, REQ >                 { Origin-Host }                 { Origin-Realm }                 { Disconnect-Cause }5.4.2.  Disconnect-Peer-Answer   The Disconnect-Peer-Answer (DPA), indicated by the Command-Code set   to 282 and the Command Flags' 'R' bit cleared, is sent as a response   to the Disconnect-Peer-Request message.  Upon receipt of this   message, the transport connection is shutdown.   Message Format      <DPA>  ::= < Diameter Header: 282 >                 { Result-Code }                 { Origin-Host }                 { Origin-Realm }                 [ Error-Message ]               * [ Failed-AVP ]5.4.3.  Disconnect-Cause AVP   The Disconnect-Cause AVP (AVP Code 273) is of type Enumerated.  A   Diameter node MUST include this AVP in the Disconnect-Peer-Request   message to inform the peer of the reason for its intention to   shutdown the transport connection.  The following values are   supported:Calhoun, et al.             Standards Track                    [Page 63]

RFC 3588                Diameter Based Protocol           September 2003   REBOOTING                         0      A scheduled reboot is imminent.   BUSY                              1      The peer's internal resources are constrained, and it has      determined that the transport connection needs to be closed.   DO_NOT_WANT_TO_TALK_TO_YOU        2      The peer has determined that it does not see a need for the      transport connection to exist, since it does not expect any      messages to be exchanged in the near future.5.5.  Transport Failure Detection   Given the nature of the Diameter protocol, it is recommended that   transport failures be detected as soon as possible.  Detecting such   failures will minimize the occurrence of messages sent to unavailable   agents, resulting in unnecessary delays, and will provide better   failover performance.  The Device-Watchdog-Request and Device-   Watchdog-Answer messages, defined in this section, are used to pro-   actively detect transport failures.5.5.1.  Device-Watchdog-Request   The Device-Watchdog-Request (DWR), indicated by the Command-Code set   to 280 and the Command Flags' 'R' bit set, is sent to a peer when no   traffic has been exchanged between two peers (seeSection 5.5.3).   Upon detection of a transport failure, this message MUST NOT be sent   to an alternate peer.   Message Format      <DWR>  ::= < Diameter Header: 280, REQ >                 { Origin-Host }                 { Origin-Realm }                 [ Origin-State-Id ]5.5.2.  Device-Watchdog-Answer   The Device-Watchdog-Answer (DWA), indicated by the Command-Code set   to 280 and the Command Flags' 'R' bit cleared, is sent as a response   to the Device-Watchdog-Request message.Calhoun, et al.             Standards Track                    [Page 64]

RFC 3588                Diameter Based Protocol           September 2003   Message Format      <DWA>  ::= < Diameter Header: 280 >                 { Result-Code }                 { Origin-Host }                 { Origin-Realm }                 [ Error-Message ]               * [ Failed-AVP ]                 [ Original-State-Id ]5.5.3.  Transport Failure Algorithm   The transport failure algorithm is defined in [AAATRANS].  All   Diameter implementations MUST support the algorithm defined in the   specification in order to be compliant to the Diameter base protocol.5.5.4.  Failover and Failback Procedures   In the event that a transport failure is detected with a peer, it is   necessary for all pending request messages to be forwarded to an   alternate agent, if possible.  This is commonly referred to as   failover.   In order for a Diameter node to perform failover procedures, it is   necessary for the node to maintain a pending message queue for a   given peer.  When an answer message is received, the corresponding   request is removed from the queue.  The Hop-by-Hop Identifier field   is used to match the answer with the queued request.   When a transport failure is detected, if possible all messages in the   queue are sent to an alternate agent with the T flag set.  On booting   a Diameter client or agent, the T flag is also set on any records   still remaining to be transmitted in non-volatile storage.  An   example of a case where it is not possible to forward the message to   an alternate server is when the message has a fixed destination, and   the unavailable peer is the message's final destination (see   Destination-Host AVP).  Such an error requires that the agent return   an answer message with the 'E' bit set and the Result-Code AVP set to   DIAMETER_UNABLE_TO_DELIVER.   It is important to note that multiple identical requests or answers   MAY be received as a result of a failover.  The End-to-End Identifier   field in the Diameter header along with the Origin-Host AVP MUST be   used to identify duplicate messages.Calhoun, et al.             Standards Track                    [Page 65]

RFC 3588                Diameter Based Protocol           September 2003   As described inSection 2.1, a connection request should be   periodically attempted with the failed peer in order to re-establish   the transport connection.  Once a connection has been successfully   established, messages can once again be forwarded to the peer.  This   is commonly referred to as failback.5.6.  Peer State Machine   This section contains a finite state machine that MUST be observed by   all Diameter implementations.  Each Diameter node MUST follow the   state machine described below when communicating with each peer.   Multiple actions are separated by commas, and may continue on   succeeding lines, as space requires.  Similarly, state and next state   may also span multiple lines, as space requires.   This state machine is closely coupled with the state machine   described in [AAATRANS], which is used to open, close, failover,   probe, and reopen transport connections.  Note in particular that   [AAATRANS] requires the use of watchdog messages to probe   connections.  For Diameter, DWR and DWA messages are to be used.   I- is used to represent the initiator (connecting) connection, while   the R- is used to represent the responder (listening) connection.   The lack of a prefix indicates that the event or action is the same   regardless of the connection on which the event occurred.   The stable states that a state machine may be in are Closed, I-Open   and R-Open; all other states are intermediate.  Note that I-Open and   R-Open are equivalent except for whether the initiator or responder   transport connection is used for communication.   A CER message is always sent on the initiating connection immediately   after the connection request is successfully completed.  In the case   of an election, one of the two connections will shut down.  The   responder connection will survive if the Origin-Host of the local   Diameter entity is higher than that of the peer; the initiator   connection will survive if the peer's Origin-Host is higher.  All   subsequent messages are sent on the surviving connection.  Note that   the results of an election on one peer are guaranteed to be the   inverse of the results on the other.   For TLS usage, a TLS handshake will begin when both ends are in the   open state.  If the TLS handshake is successful, all further messages   will be sent via TLS.  If the handshake fails, both ends move to the   closed state.   The state machine constrains only the behavior of a Diameter   implementation as seen by Diameter peers through events on the wire.Calhoun, et al.             Standards Track                    [Page 66]

RFC 3588                Diameter Based Protocol           September 2003   Any implementation that produces equivalent results is considered   compliant.   state            event              action         next state   -----------------------------------------------------------------   Closed           Start            I-Snd-Conn-Req   Wait-Conn-Ack                    R-Conn-CER       R-Accept,        R-Open                                     Process-CER,                                     R-Snd-CEA   Wait-Conn-Ack    I-Rcv-Conn-Ack   I-Snd-CER        Wait-I-CEA                    I-Rcv-Conn-Nack  Cleanup          Closed                    R-Conn-CER       R-Accept,        Wait-Conn-Ack/                                     Process-CER      Elect                    Timeout          Error            Closed   Wait-I-CEA       I-Rcv-CEA        Process-CEA      I-Open                    R-Conn-CER       R-Accept,        Wait-Returns                                     Process-CER,                                     Elect                    I-Peer-Disc      I-Disc           Closed                    I-Rcv-Non-CEA    Error            Closed                    Timeout          Error            Closed   Wait-Conn-Ack/   I-Rcv-Conn-Ack   I-Snd-CER,Elect  Wait-Returns   Elect            I-Rcv-Conn-Nack  R-Snd-CEA        R-Open                    R-Peer-Disc      R-Disc           Wait-Conn-Ack                    R-Conn-CER       R-Reject         Wait-Conn-Ack/                                                      Elect                    Timeout          Error            Closed   Wait-Returns     Win-Election     I-Disc,R-Snd-CEA R-Open                    I-Peer-Disc      I-Disc,          R-Open                                     R-Snd-CEA                    I-Rcv-CEA        R-Disc           I-Open                    R-Peer-Disc      R-Disc           Wait-I-CEA                    R-Conn-CER       R-Reject         Wait-Returns                    Timeout          Error            Closed   R-Open           Send-Message     R-Snd-Message    R-Open                    R-Rcv-Message    Process          R-Open                    R-Rcv-DWR        Process-DWR,     R-Open                                     R-Snd-DWA                    R-Rcv-DWA        Process-DWA      R-Open                    R-Conn-CER       R-Reject         R-Open                    Stop             R-Snd-DPR        Closing                    R-Rcv-DPR        R-Snd-DPA,       Closed                                           R-DiscCalhoun, et al.             Standards Track                    [Page 67]

RFC 3588                Diameter Based Protocol           September 2003                    R-Peer-Disc      R-Disc           Closed                    R-Rcv-CER        R-Snd-CEA        R-Open                    R-Rcv-CEA        Process-CEA      R-Open   I-Open           Send-Message     I-Snd-Message    I-Open                    I-Rcv-Message    Process          I-Open                    I-Rcv-DWR        Process-DWR,     I-Open                                     I-Snd-DWA                    I-Rcv-DWA        Process-DWA      I-Open                    R-Conn-CER       R-Reject         I-Open                    Stop             I-Snd-DPR        Closing                    I-Rcv-DPR        I-Snd-DPA,       Closed                                     I-Disc                    I-Peer-Disc      I-Disc           Closed                    I-Rcv-CER        I-Snd-CEA        I-Open                    I-Rcv-CEA        Process-CEA      I-Open   Closing          I-Rcv-DPA        I-Disc           Closed                    R-Rcv-DPA        R-Disc           Closed                    Timeout          Error            Closed                    I-Peer-Disc      I-Disc           Closed                    R-Peer-Disc      R-Disc           Closed5.6.1.  Incoming connections   When a connection request is received from a Diameter peer, it is   not, in the general case, possible to know the identity of that peer   until a CER is received from it.  This is because host and port   determine the identity of a Diameter peer; and the source port of an   incoming connection is arbitrary.  Upon receipt of CER, the identity   of the connecting peer can be uniquely determined from Origin-Host.   For this reason, a Diameter peer must employ logic separate from the   state machine to receive connection requests, accept them, and await   CER.  Once CER arrives on a new connection, the Origin-Host that   identifies the peer is used to locate the state machine associated   with that peer, and the new connection and CER are passed to the   state machine as an R-Conn-CER event.   The logic that handles incoming connections SHOULD close and discard   the connection if any message other than CER arrives, or if an   implementation-defined timeout occurs prior to receipt of CER.   Because handling of incoming connections up to and including receipt   of CER requires logic, separate from that of any individual state   machine associated with a particular peer, it is described separately   in this section rather than in the state machine above.Calhoun, et al.             Standards Track                    [Page 68]

RFC 3588                Diameter Based Protocol           September 20035.6.2.  Events   Transitions and actions in the automaton are caused by events.  In   this section, we will ignore the -I and -R prefix, since the actual   event would be identical, but would occur on one of two possible   connections.   Start          The Diameter application has signaled that a                  connection should be initiated with the peer.   R-Conn-CER     An acknowledgement is received stating that the                  transport connection has been established, and the                  associated CER has arrived.   Rcv-Conn-Ack   A positive acknowledgement is received confirming that                  the transport connection is established.   Rcv-Conn-Nack  A negative acknowledgement was received stating that                  the transport connection was not established.   Timeout        An application-defined timer has expired while waiting                  for some event.   Rcv-CER        A CER message from the peer was received.   Rcv-CEA        A CEA message from the peer was received.   Rcv-Non-CEA    A message other than CEA from the peer was received.   Peer-Disc      A disconnection indication from the peer was received.   Rcv-DPR        A DPR message from the peer was received.   Rcv-DPA        A DPA message from the peer was received.   Win-Election   An election was held, and the local node was the                  winner.   Send-Message   A message is to be sent.   Rcv-Message    A message other than CER, CEA, DPR, DPA, DWR or DWA                  was received.   Stop           The Diameter application has signaled that a                  connection should be terminated (e.g., on system                  shutdown).Calhoun, et al.             Standards Track                    [Page 69]

RFC 3588                Diameter Based Protocol           September 20035.6.3.  Actions   Actions in the automaton are caused by events and typically indicate   the transmission of packets and/or an action to be taken on the   connection.  In this section we will ignore the I- and R-prefix,   since the actual action would be identical, but would occur on one of   two possible connections.   Snd-Conn-Req   A transport connection is initiated with the peer.   Accept         The incoming connection associated with the R-Conn-CER                  is accepted as the responder connection.   Reject         The incoming connection associated with the R-Conn-CER                  is disconnected.   Process-CER    The CER associated with the R-Conn-CER is processed.   Snd-CER        A CER message is sent to the peer.   Snd-CEA        A CEA message is sent to the peer.   Cleanup        If necessary, the connection is shutdown, and any                  local resources are freed.   Error          The transport layer connection is disconnected, either                  politely or abortively, in response to an error                  condition.  Local resources are freed.   Process-CEA    A received CEA is processed.   Snd-DPR        A DPR message is sent to the peer.   Snd-DPA        A DPA message is sent to the peer.   Disc           The transport layer connection is disconnected, and                  local resources are freed.   Elect          An election occurs (seeSection 5.6.4 for more                  information).   Snd-Message    A message is sent.   Snd-DWR        A DWR message is sent.   Snd-DWA        A DWA message is sent.   Process-DWR    The DWR message is serviced.Calhoun, et al.             Standards Track                    [Page 70]

RFC 3588                Diameter Based Protocol           September 2003   Process-DWA    The DWA message is serviced.   Process        A message is serviced.5.6.4.  The Election Process   The election is performed on the responder.  The responder compares   the Origin-Host received in the CER sent by its peer with its own   Origin-Host.  If the local Diameter entity's Origin-Host is higher   than the peer's, a Win-Election event is issued locally.   The comparison proceeds by considering the shorter OctetString to be   padded with zeros so that it length is the same as the length of the   longer, then performing an octet-by-octet unsigned comparison with   the first octet being most significant.  Any remaining octets are   assumed to have value 0x80.6.  Diameter message processing   This section describes how Diameter requests and answers are created   and processed.6.1.  Diameter Request Routing Overview   A request is sent towards its final destination using a combination   of the Destination-Realm and Destination-Host AVPs, in one of these   three combinations:   -  a request that is not able to be proxied (such as CER) MUST NOT      contain either Destination-Realm or Destination-Host AVPs.   -  a request that needs to be sent to a home server serving a      specific realm, but not to a specific server (such as the first      request of a series of round-trips), MUST contain a Destination-      Realm AVP, but MUST NOT contain a Destination-Host AVP.   -  otherwise, a request that needs to be sent to a specific home      server among those serving a given realm, MUST contain both the      Destination-Realm and Destination-Host AVPs.   The Destination-Host AVP is used as described above when the   destination of the request is fixed, which includes:   -  Authentication requests that span multiple round trips   -  A Diameter message that uses a security mechanism that makes use      of a pre-established session key shared between the source and the      final destination of the message.Calhoun, et al.             Standards Track                    [Page 71]

RFC 3588                Diameter Based Protocol           September 2003   -  Server initiated messages that MUST be received by a specific      Diameter client (e.g., access device), such as the Abort-Session-      Request message, which is used to request that a particular user's      session be terminated.   Note that an agent can forward a request to a host described in the   Destination-Host AVP only if the host in question is included in its   peer table (seeSection 2.7).  Otherwise, the request is routed based   on the Destination-Realm only (see Sections6.1.6).   The Destination-Realm AVP MUST be present if the message is   proxiable.  Request messages that may be forwarded by Diameter agents   (proxies, redirects or relays) MUST also contain an Acct-   Application-Id AVP, an Auth-Application-Id AVP or a Vendor-Specific-   Application-Id AVP.  A message that MUST NOT be forwarded by Diameter   agents (proxies, redirects or relays) MUST not include the   Destination-Realm in its ABNF.  The value of the Destination-Realm   AVP MAY be extracted from the User-Name AVP, or other application-   specific methods.   When a message is received, the message is processed in the following   order:   1. If the message is destined for the local host, the procedures      listed inSection 6.1.4 are followed.   2. If the message is intended for a Diameter peer with whom the local      host is able to directly communicate, the procedures listed inSection 6.1.5 are followed.  This is known as Request Forwarding.   3. The procedures listed inSection 6.1.6 are followed, which is      known as Request Routing.   4. If none of the above is successful, an answer is returned with the      Result-Code set to DIAMETER_UNABLE_TO_DELIVER, with the E-bit set.   For routing of Diameter messages to work within an administrative   domain, all Diameter nodes within the realm MUST be peers.   Note the processing rules contained in this section are intended to   be used as general guidelines to Diameter developers.  Certain   implementations MAY use different methods than the ones described   here, and still comply with the protocol specification.  SeeSection7 for more detail on error handling.Calhoun, et al.             Standards Track                    [Page 72]

RFC 3588                Diameter Based Protocol           September 20036.1.1.  Originating a Request   When creating a request, in addition to any other procedures   described in the application definition for that specific request,   the following procedures MUST be followed:   -  the Command-Code is set to the appropriate value   -  the 'R' bit is set   -  the End-to-End Identifier is set to a locally unique value   -  the Origin-Host and Origin-Realm AVPs MUST be set to the      appropriate values, used to identify the source of the message   -  the Destination-Host and Destination-Realm AVPs MUST be set to the      appropriate values as described inSection 6.1.   -  an Acct-Application-Id AVP, an Auth-Application-Id or a Vendor-      Specific-Application-Id AVP must be included if the request is      proxiable.6.1.2.  Sending a Request   When sending a request, originated either locally, or as the result   of a forwarding or routing operation, the following procedures MUST   be followed:   -  the Hop-by-Hop Identifier should be set to a locally unique value   -  The message should be saved in the list of pending requests.   Other actions to perform on the message based on the particular role   the agent is playing are described in the following sections.6.1.3.  Receiving Requests   A relay or proxy agent MUST check for forwarding loops when receiving   requests.  A loop is detected if the server finds its own identity in   a Route-Record AVP.  When such an event occurs, the agent MUST answer   with the Result-Code AVP set to DIAMETER_LOOP_DETECTED.6.1.4.  Processing Local Requests   A request is known to be for local consumption when one of the   following conditions occur:   -  The Destination-Host AVP contains the local host's identity,Calhoun, et al.             Standards Track                    [Page 73]

RFC 3588                Diameter Based Protocol           September 2003   -  The Destination-Host AVP is not present, the Destination-Realm AVP      contains a realm the server is configured to process locally, and      the Diameter application is locally supported, or   -  Both the Destination-Host and the Destination-Realm are not      present.   When a request is locally processed, the rules inSection 6.2 should   be used to generate the corresponding answer.6.1.5.  Request Forwarding   Request forwarding is done using the Diameter Peer Table.  The   Diameter peer table contains all of the peers that the local node is   able to directly communicate with.   When a request is received, and the host encoded in the Destination-   Host AVP is one that is present in the peer table, the message SHOULD   be forwarded to the peer.6.1.6.  Request Routing   Diameter request message routing is done via realms and applications.   A Diameter message that may be forwarded by Diameter agents (proxies,   redirects or relays) MUST include the target realm in the   Destination-Realm AVP and one of the application identification AVPs   Auth-Application-Id, Acct-Application-Id or Vendor-Specific-   Application-Id.  The realm MAY be retrieved from the User-Name AVP,   which is in the form of a Network Access Identifier (NAI).  The realm   portion of the NAI is inserted in the Destination-Realm AVP.   Diameter agents MAY have a list of locally supported realms and   applications, and MAY have a list of externally supported realms and   applications.  When a request is received that includes a realm   and/or application that is not locally supported, the message is   routed to the peer configured in the Realm Routing Table (seeSection2.7).6.1.7.  Redirecting requests   When a redirect agent receives a request whose routing entry is set   to REDIRECT, it MUST reply with an answer message with the 'E' bit   set, while maintaining the Hop-by-Hop Identifier in the header, and   include the Result-Code AVP to DIAMETER_REDIRECT_INDICATION.  Each of   the servers associated with the routing entry are added in separate   Redirect-Host AVP.Calhoun, et al.             Standards Track                    [Page 74]

RFC 3588                Diameter Based Protocol           September 2003                  +------------------+                  |     Diameter     |                  |  Redirect Agent  |                  +------------------+                   ^    |    2. command + 'E' bit    1. Request     |    |    Result-Code =   joe@example.com |    |    DIAMETER_REDIRECT_INDICATION +                   |    |    Redirect-Host AVP(s)                   |    v               +-------------+  3. Request  +-------------+               | example.com |------------->| example.net |               |    Relay    |              |   Diameter  |               |    Agent    |<-------------|    Server   |               +-------------+  4. Answer   +-------------+                     Figure 5: Diameter Redirect Agent   The receiver of the answer message with the 'E' bit set, and the   Result-Code AVP set to DIAMETER_REDIRECT_INDICATION uses the hop-by-   hop field in the Diameter header to identify the request in the   pending message queue (seeSection 5.3) that is to be redirected.  If   no transport connection exists with the new agent, one is created,   and the request is sent directly to it.   Multiple Redirect-Host AVPs are allowed.  The receiver of the answer   message with the 'E' bit set selects exactly one of these hosts as   the destination of the redirected message.6.1.8.  Relaying and Proxying Requests   A relay or proxy agent MUST append a Route-Record AVP to all requests   forwarded.  The AVP contains the identity of the peer the request was   received from.   The Hop-by-Hop identifier in the request is saved, and replaced with   a locally unique value.  The source of the request is also saved,   which includes the IP address, port and protocol.   A relay or proxy agent MAY include the Proxy-Info AVP in requests if   it requires access to any local state information when the   corresponding response is received.  Proxy-Info AVP has certain   security implications and SHOULD contain an embedded HMAC with a   node-local key.  Alternatively, it MAY simply use local storage to   store state information.   The message is then forwarded to the next hop, as identified in the   Realm Routing Table.Calhoun, et al.             Standards Track                    [Page 75]

RFC 3588                Diameter Based Protocol           September 2003   Figure 6 provides an example of message routing using the procedures   listed in these sections.        (Origin-Host=nas.mno.net)    (Origin-Host=nas.mno.net)        (Origin-Realm=mno.net)       (Origin-Realm=mno.net)        (Destination-Realm=example.com)  (Destination-                                         Realm=example.com)                                     (Route-Record=nas.example.net)    +------+      ------>      +------+      ------>      +------+    |      |     (Request)     |      |      (Request)    |      |    | NAS  +-------------------+ DRL  +-------------------+ HMS  |    |      |                   |      |                   |      |    +------+     <------       +------+     <------       +------+   example.net    (Answer)   example.net     (Answer)   example.com        (Origin-Host=hms.example.com)   (Origin-Host=hms.example.com)        (Origin-Realm=example.com)      (Origin-Realm=example.com)                  Figure 6: Routing of Diameter messages6.2.  Diameter Answer Processing   When a request is locally processed, the following procedures MUST be   applied to create the associated answer, in addition to any   additional procedures that MAY be discussed in the Diameter   application defining the command:   -  The same Hop-by-Hop identifier in the request is used in the      answer.   -  The local host's identity is encoded in the Origin-Host AVP.   -  The Destination-Host and Destination-Realm AVPs MUST NOT be      present in the answer message.   -  The Result-Code AVP is added with its value indicating success or      failure.   -  If the Session-Id is present in the request, it MUST be included      in the answer.   -  Any Proxy-Info AVPs in the request MUST be added to the answer      message, in the same order they were present in the request.   -  The 'P' bit is set to the same value as the one in the request.   -  The same End-to-End identifier in the request is used in the      answer.Calhoun, et al.             Standards Track                    [Page 76]

RFC 3588                Diameter Based Protocol           September 2003   Note that the error messages (seeSection 7.3) are also subjected to   the above processing rules.6.2.1.  Processing received Answers   A Diameter client or proxy MUST match the Hop-by-Hop Identifier in an   answer received against the list of pending requests.  The   corresponding message should be removed from the list of pending   requests.  It SHOULD ignore answers received that do not match a   known Hop-by-Hop Identifier.6.2.2.  Relaying and Proxying Answers   If the answer is for a request which was proxied or relayed, the   agent MUST restore the original value of the Diameter header's Hop-   by-Hop Identifier field.   If the last Proxy-Info AVP in the message is targeted to the local   Diameter server, the AVP MUST be removed before the answer is   forwarded.   If a relay or proxy agent receives an answer with a Result-Code AVP   indicating a failure, it MUST NOT modify the contents of the AVP.   Any additional local errors detected SHOULD be logged, but not   reflected in the Result-Code AVP.  If the agent receives an answer   message with a Result-Code AVP indicating success, and it wishes to   modify the AVP to indicate an error, it MUST modify the Result-Code   AVP to contain the appropriate error in the message destined towards   the access device as well as include the Error-Reporting-Host AVP and   it MUST issue an STR on behalf of the access device.   The agent MUST then send the answer to the host that it received the   original request from.6.3.  Origin-Host AVP   The Origin-Host AVP (AVP Code 264) is of type DiameterIdentity, and   MUST be present in all Diameter messages.  This AVP identifies the   endpoint that originated the Diameter message.  Relay agents MUST NOT   modify this AVP.   The value of the Origin-Host AVP is guaranteed to be unique within a   single host.   Note that the Origin-Host AVP may resolve to more than one address as   the Diameter peer may support more than one address.Calhoun, et al.             Standards Track                    [Page 77]

RFC 3588                Diameter Based Protocol           September 2003   This AVP SHOULD be placed as close to the Diameter header as   possible. 6.106.4.  Origin-Realm AVP   The Origin-Realm AVP (AVP Code 296) is of type DiameterIdentity.   This AVP contains the Realm of the originator of any Diameter message   and MUST be present in all messages.   This AVP SHOULD be placed as close to the Diameter header as   possible.6.5.  Destination-Host AVP   The Destination-Host AVP (AVP Code 293) is of type DiameterIdentity.   This AVP MUST be present in all unsolicited agent initiated messages,   MAY be present in request messages, and MUST NOT be present in Answer   messages.   The absence of the Destination-Host AVP will cause a message to be   sent to any Diameter server supporting the application within the   realm specified in Destination-Realm AVP.   This AVP SHOULD be placed as close to the Diameter header as   possible.6.6.  Destination-Realm AVP   The Destination-Realm AVP (AVP Code 283) is of type DiameterIdentity,   and contains the realm the message is to be routed to.  The   Destination-Realm AVP MUST NOT be present in Answer messages.   Diameter Clients insert the realm portion of the User-Name AVP.   Diameter servers initiating a request message use the value of the   Origin-Realm AVP from a previous message received from the intended   target host (unless it is known a priori).  When present, the   Destination-Realm AVP is used to perform message routing decisions.   Request messages whose ABNF does not list the Destination-Realm AVP   as a mandatory AVP are inherently non-routable messages.   This AVP SHOULD be placed as close to the Diameter header as   possible.6.7.  Routing AVPs   The AVPs defined in this section are Diameter AVPs used for routing   purposes.  These AVPs change as Diameter messages are processed by   agents, and therefore MUST NOT be protected by end-to-end security.Calhoun, et al.             Standards Track                    [Page 78]

RFC 3588                Diameter Based Protocol           September 20036.7.1.  Route-Record AVP   The Route-Record AVP (AVP Code 282) is of type DiameterIdentity.  The   identity added in this AVP MUST be the same as the one received in   the Origin-Host of the Capabilities Exchange message.6.7.2.  Proxy-Info AVP   The Proxy-Info AVP (AVP Code 284) is of type Grouped.  The Grouped   Data field has the following ABNF grammar:      Proxy-Info ::= < AVP Header: 284 >                     { Proxy-Host }                     { Proxy-State }                   * [ AVP ]6.7.3.  Proxy-Host AVP   The Proxy-Host AVP (AVP Code 280) is of type DiameterIdentity.  This   AVP contains the identity of the host that added the Proxy-Info AVP.6.7.4.  Proxy-State AVP   The Proxy-State AVP (AVP Code 33) is of type OctetString, and   contains state local information, and MUST be treated as opaque data.6.8.  Auth-Application-Id AVP   The Auth-Application-Id AVP (AVP Code 258) is of type Unsigned32 and   is used in order to advertise support of the Authentication and   Authorization portion of an application (seeSection 2.4).  The   Auth-Application-Id MUST also be present in all Authentication and/or   Authorization messages that are defined in a separate Diameter   specification and have an Application ID assigned.6.9.  Acct-Application-Id AVP   The Acct-Application-Id AVP (AVP Code 259) is of type Unsigned32 and   is used in order to advertise support of the Accounting portion of an   application (seeSection 2.4).  The Acct-Application-Id MUST also be   present in all Accounting messages.  Exactly one of the Auth-   Application-Id and Acct-Application-Id AVPs MAY be present.6.10.  Inband-Security-Id AVP   The Inband-Security-Id AVP (AVP Code 299) is of type Unsigned32 and   is used in order to advertise support of the Security portion of the   application.Calhoun, et al.             Standards Track                    [Page 79]

RFC 3588                Diameter Based Protocol           September 2003   Currently, the following values are supported, but there is ample   room to add new security Ids.   NO_INBAND_SECURITY                0      This peer does not support TLS.  This is the default value, if the      AVP is omitted.   TLS                               1      This node supports TLS security, as defined by [TLS].6.11.  Vendor-Specific-Application-Id AVP   The Vendor-Specific-Application-Id AVP (AVP Code 260) is of type   Grouped and is used to advertise support of a vendor-specific   Diameter Application.  Exactly one of the Auth-Application-Id and   Acct-Application-Id AVPs MAY be present.   This AVP MUST also be present as the first AVP in all experimental   commands defined in the vendor-specific application.   This AVP SHOULD be placed as close to the Diameter header as   possible.   AVP Format   <Vendor-Specific-Application-Id> ::= < AVP Header: 260 >                                     1* [ Vendor-Id ]                                     0*1{ Auth-Application-Id }                                     0*1{ Acct-Application-Id }6.12.  Redirect-Host AVP   One or more of instances of this AVP MUST be present if the answer   message's 'E' bit is set and the Result-Code AVP is set to   DIAMETER_REDIRECT_INDICATION.   Upon receiving the above, the receiving Diameter node SHOULD forward   the request directly to one of the hosts identified in these AVPs.   The server contained in the selected Redirect-Host AVP SHOULD be used   for all messages pertaining to this session.6.13.  Redirect-Host-Usage AVP   The Redirect-Host-Usage AVP (AVP Code 261) is of type Enumerated.   This AVP MAY be present in answer messages whose 'E' bit is set and   the Result-Code AVP is set to DIAMETER_REDIRECT_INDICATION.Calhoun, et al.             Standards Track                    [Page 80]

RFC 3588                Diameter Based Protocol           September 2003   When present, this AVP dictates how the routing entry resulting from   the Redirect-Host is to be used.  The following values are supported:   DONT_CACHE                        0      The host specified in the Redirect-Host AVP should not be cached.      This is the default value.   ALL_SESSION                       1      All messages within the same session, as defined by the same value      of the Session-ID AVP MAY be sent to the host specified in the      Redirect-Host AVP.   ALL_REALM                         2      All messages destined for the realm requested MAY be sent to the      host specified in the Redirect-Host AVP.   REALM_AND_APPLICATION             3      All messages for the application requested to the realm specified      MAY be sent to the host specified in the Redirect-Host AVP.   ALL_APPLICATION                   4      All messages for the application requested MAY be sent to the host      specified in the Redirect-Host AVP.   ALL_HOST                          5      All messages that would be sent to the host that generated the      Redirect-Host MAY be sent to the host specified in the Redirect-      Host AVP.   ALL_USER                          6      All messages for the user requested MAY be sent to the host      specified in the Redirect-Host AVP.6.14.  Redirect-Max-Cache-Time AVP   The Redirect-Max-Cache-Time AVP (AVP Code 262) is of type Unsigned32.   This AVP MUST be present in answer messages whose 'E' bit is set, the   Result-Code AVP is set to DIAMETER_REDIRECT_INDICATION and the   Redirect-Host-Usage AVP set to a non-zero value.   This AVP contains the maximum number of seconds the peer and route   table entries, created as a result of the Redirect-Host, will be   cached.  Note that once a host created due to a redirect indication   is no longer reachable, any associated peer and routing table entries   MUST be deleted.Calhoun, et al.             Standards Track                    [Page 81]

RFC 3588                Diameter Based Protocol           September 20036.15.  E2E-Sequence AVP   The E2E-Sequence AVP (AVP Code 300) provides anti-replay protection   for end to end messages and is of type grouped.  It contains a random   value (an OctetString with a nonce) and counter (an Integer).  For   each end-to-end peer with which a node communicates (or remembers   communicating) a different nonce value MUST be used and the counter   is initiated at zero and increases by one each time this AVP is   emitted to that peer.  This AVP MUST be included in all messages   which use end-to-end protection (e.g., CMS signing or encryption).7.  Error Handling   There are two different types of errors in Diameter; protocol and   application errors.  A protocol error is one that occurs at the base   protocol level, and MAY require per hop attention (e.g., message   routing error).  Application errors, on the other hand, generally   occur due to a problem with a function specified in a Diameter   application (e.g., user authentication, Missing AVP).   Result-Code AVP values that are used to report protocol errors MUST   only be present in answer messages whose 'E' bit is set.  When a   request message is received that causes a protocol error, an answer   message is returned with the 'E' bit set, and the Result-Code AVP is   set to the appropriate protocol error value.  As the answer is sent   back towards the originator of the request, each proxy or relay agent   MAY take action on the message.                          1. Request        +---------+ Link Broken                +-------------------------->|Diameter |----///----+                |     +---------------------|         |           v         +------+--+  | 2. answer + 'E' set | Relay 2 |     +--------+         |Diameter |<-+ (Unable to Forward) +---------+     |Diameter|         |         |                                        |  Home  |         | Relay 1 |--+                     +---------+     | Server |         +---------+  |   3. Request        |Diameter |     +--------+                      +-------------------->|         |           ^                                            | Relay 3 |-----------+                                            +---------+           Figure 7:  Example of Protocol Error causing answer message   Figure 7 provides an example of a message forwarded upstream by a   Diameter relay.  When the message is received by Relay 2, and it   detects that it cannot forward the request to the home server, an   answer message is returned with the 'E' bit set and the Result-Code   AVP set to DIAMETER_UNABLE_TO_DELIVER.  Given that this error fallsCalhoun, et al.             Standards Track                    [Page 82]

RFC 3588                Diameter Based Protocol           September 2003   within the protocol error category, Relay 1 would take special   action, and given the error, attempt to route the message through its   alternate Relay 3.         +---------+ 1. Request  +---------+ 2. Request  +---------+         | Access  |------------>|Diameter |------------>|Diameter |         |         |             |         |             |  Home   |         | Device  |<------------|  Relay  |<------------| Server  |         +---------+  4. Answer  +---------+  3. Answer  +---------+                    (Missing AVP)           (Missing AVP)              Figure 8: Example of Application Error Answer message   Figure 8 provides an example of a Diameter message that caused an   application error.  When application errors occur, the Diameter   entity reporting the error clears the 'R' bit in the Command Flags,   and adds the Result-Code AVP with the proper value.  Application   errors do not require any proxy or relay agent involvement, and   therefore the message would be forwarded back to the originator of   the request.   There are certain Result-Code AVP application errors that require   additional AVPs to be present in the answer.  In these cases, the   Diameter node that sets the Result-Code AVP to indicate the error   MUST add the AVPs.  Examples are:   -  An unrecognized AVP is received with the 'M' bit (Mandatory bit)      set, causes an answer to be sent with the Result-Code AVP set to      DIAMETER_AVP_UNSUPPORTED, and the Failed-AVP AVP containing the      offending AVP.   -  An AVP that is received with an unrecognized value causes an      answer to be returned with the Result-Code AVP set to      DIAMETER_INVALID_AVP_VALUE, with the Failed-AVP AVP containing the      AVP causing the error.   -  A command is received with an AVP that is omitted, yet is      mandatory according to the command's ABNF.  The receiver issues an      answer with the Result-Code set to DIAMETER_MISSING_AVP, and      creates an AVP with the AVP Code and other fields set as expected      in the missing AVP.  The created AVP is then added to the Failed-      AVP AVP.   The Result-Code AVP describes the error that the Diameter node   encountered in its processing.  In case there are multiple errors,   the Diameter node MUST report only the first error it encounteredCalhoun, et al.             Standards Track                    [Page 83]

RFC 3588                Diameter Based Protocol           September 2003   (detected possibly in some implementation dependent order).  The   specific errors that can be described by this AVP are described in   the following section.7.1.  Result-Code AVP   The Result-Code AVP (AVP Code 268) is of type Unsigned32 and   indicates whether a particular request was completed successfully or   whether an error occurred.  All Diameter answer messages defined in   IETF applications MUST include one Result-Code AVP.  A non-successful   Result-Code AVP (one containing a non 2xxx value other than   DIAMETER_REDIRECT_INDICATION) MUST include the Error-Reporting-Host   AVP if the host setting the Result-Code AVP is different from the   identity encoded in the Origin-Host AVP.   The Result-Code data field contains an IANA-managed 32-bit address   space representing errors (seeSection 11.4).  Diameter provides the   following classes of errors, all identified by the thousands digit in   the decimal notation:      -  1xxx (Informational)      -  2xxx (Success)      -  3xxx (Protocol Errors)      -  4xxx (Transient Failures)      -  5xxx (Permanent Failure)   A non-recognized class (one whose first digit is not defined in this   section) MUST be handled as a permanent failure.7.1.1.  Informational   Errors that fall within this category are used to inform the   requester that a request could not be satisfied, and additional   action is required on its part before access is granted.   DIAMETER_MULTI_ROUND_AUTH         1001      This informational error is returned by a Diameter server to      inform the access device that the authentication mechanism being      used requires multiple round trips, and a subsequent request needs      to be issued in order for access to be granted.7.1.2.  Success   Errors that fall within the Success category are used to inform a   peer that a request has been successfully completed.   DIAMETER_SUCCESS                   2001      The Request was successfully completed.Calhoun, et al.             Standards Track                    [Page 84]

RFC 3588                Diameter Based Protocol           September 2003   DIAMETER_LIMITED_SUCCESS           2002      When returned, the request was successfully completed, but      additional processing is required by the application in order to      provide service to the user.7.1.3.  Protocol Errors   Errors that fall within the Protocol Error category SHOULD be treated   on a per-hop basis, and Diameter proxies MAY attempt to correct the   error, if it is possible.  Note that these and only these errors MUST   only be used in answer messages whose 'E' bit is set.   DIAMETER_COMMAND_UNSUPPORTED       3001      The Request contained a Command-Code that the receiver did not      recognize or support.  This MUST be used when a Diameter node      receives an experimental command that it does not understand.   DIAMETER_UNABLE_TO_DELIVER         3002      This error is given when Diameter can not deliver the message to      the destination, either because no host within the realm      supporting the required application was available to process the      request, or because Destination-Host AVP was given without the      associated Destination-Realm AVP.   DIAMETER_REALM_NOT_SERVED          3003      The intended realm of the request is not recognized.   DIAMETER_TOO_BUSY                  3004      When returned, a Diameter node SHOULD attempt to send the message      to an alternate peer.  This error MUST only be used when a      specific server is requested, and it cannot provide the requested      service.   DIAMETER_LOOP_DETECTED             3005      An agent detected a loop while trying to get the message to the      intended recipient.  The message MAY be sent to an alternate peer,      if one is available, but the peer reporting the error has      identified a configuration problem.   DIAMETER_REDIRECT_INDICATION       3006      A redirect agent has determined that the request could not be      satisfied locally and the initiator of the request should direct      the request directly to the server, whose contact information has      been added to the response.  When set, the Redirect-Host AVP MUST      be present.   DIAMETER_APPLICATION_UNSUPPORTED   3007      A request was sent for an application that is not supported.Calhoun, et al.             Standards Track                    [Page 85]

RFC 3588                Diameter Based Protocol           September 2003   DIAMETER_INVALID_HDR_BITS          3008      A request was received whose bits in the Diameter header were      either set to an invalid combination, or to a value that is      inconsistent with the command code's definition.   DIAMETER_INVALID_AVP_BITS          3009      A request was received that included an AVP whose flag bits are      set to an unrecognized value, or that is inconsistent with the      AVP's definition.   DIAMETER_UNKNOWN_PEER              3010      A CER was received from an unknown peer.7.1.4.  Transient Failures      Errors that fall within the transient failures category are used      to inform a peer that the request could not be satisfied at the      time it was received, but MAY be able to satisfy the request in      the future.   DIAMETER_AUTHENTICATION_REJECTED   4001      The authentication process for the user failed, most likely due to      an invalid password used by the user.  Further attempts MUST only      be tried after prompting the user for a new password.   DIAMETER_OUT_OF_SPACE              4002      A Diameter node received the accounting request but was unable to      commit it to stable storage due to a temporary lack of space.   ELECTION_LOST                      4003      The peer has determined that it has lost the election process and      has therefore disconnected the transport connection.7.1.5.  Permanent Failures      Errors that fall within the permanent failures category are used      to inform the peer that the request failed, and should not be      attempted again.   DIAMETER_AVP_UNSUPPORTED           5001      The peer received a message that contained an AVP that is not      recognized or supported and was marked with the Mandatory bit.  A      Diameter message with this error MUST contain one or more Failed-      AVP AVP containing the AVPs that caused the failure.   DIAMETER_UNKNOWN_SESSION_ID        5002      The request contained an unknown Session-Id.Calhoun, et al.             Standards Track                    [Page 86]

RFC 3588                Diameter Based Protocol           September 2003   DIAMETER_AUTHORIZATION_REJECTED    5003      A request was received for which the user could not be authorized.      This error could occur if the service requested is not permitted      to the user.   DIAMETER_INVALID_AVP_VALUE         5004      The request contained an AVP with an invalid value in its data      portion.  A Diameter message indicating this error MUST include      the offending AVPs within a Failed-AVP AVP.   DIAMETER_MISSING_AVP               5005      The request did not contain an AVP that is required by the Command      Code definition.  If this value is sent in the Result-Code AVP, a      Failed-AVP AVP SHOULD be included in the message.  The Failed-AVP      AVP MUST contain an example of the missing AVP complete with the      Vendor-Id if applicable.  The value field of the missing AVP      should be of correct minimum length and contain zeroes.   DIAMETER_RESOURCES_EXCEEDED        5006      A request was received that cannot be authorized because the user      has already expended allowed resources.  An example of this error      condition is a user that is restricted to one dial-up PPP port,      attempts to establish a second PPP connection.   DIAMETER_CONTRADICTING_AVPS        5007      The Home Diameter server has detected AVPs in the request that      contradicted each other, and is not willing to provide service to      the user.  One or more Failed-AVP AVPs MUST be present, containing      the AVPs that contradicted each other.   DIAMETER_AVP_NOT_ALLOWED           5008      A message was received with an AVP that MUST NOT be present.  The      Failed-AVP AVP MUST be included and contain a copy of the      offending AVP.   DIAMETER_AVP_OCCURS_TOO_MANY_TIMES 5009      A message was received that included an AVP that appeared more      often than permitted in the message definition.  The Failed-AVP      AVP MUST be included and contain a copy of the first instance of      the offending AVP that exceeded the maximum number of occurrences   DIAMETER_NO_COMMON_APPLICATION     5010      This error is returned when a CER message is received, and there      are no common applications supported between the peers.   DIAMETER_UNSUPPORTED_VERSION       5011      This error is returned when a request was received, whose version      number is unsupported.Calhoun, et al.             Standards Track                    [Page 87]

RFC 3588                Diameter Based Protocol           September 2003   DIAMETER_UNABLE_TO_COMPLY          5012      This error is returned when a request is rejected for unspecified      reasons.   DIAMETER_INVALID_BIT_IN_HEADER     5013      This error is returned when an unrecognized bit in the Diameter      header is set to one (1).   DIAMETER_INVALID_AVP_LENGTH        5014      The request contained an AVP with an invalid length.  A Diameter      message indicating this error MUST include the offending AVPs      within a Failed-AVP AVP.   DIAMETER_INVALID_MESSAGE_LENGTH    5015      This error is returned when a request is received with an invalid      message length.   DIAMETER_INVALID_AVP_BIT_COMBO     5016      The request contained an AVP with which is not allowed to have the      given value in the AVP Flags field.  A Diameter message indicating      this error MUST include the offending AVPs within a Failed-AVP      AVP.   DIAMETER_NO_COMMON_SECURITY        5017      This error is returned when a CER message is received, and there      are no common security mechanisms supported between the peers.  A      Capabilities-Exchange-Answer (CEA) MUST be returned with the      Result-Code AVP set to DIAMETER_NO_COMMON_SECURITY.7.2.  Error Bit   The 'E' (Error Bit) in the Diameter header is set when the request   caused a protocol-related error (seeSection 7.1.3).  A message with   the 'E' bit MUST NOT be sent as a response to an answer message.   Note that a message with the 'E' bit set is still subjected to the   processing rules defined inSection 6.2.  When set, the answer   message will not conform to the ABNF specification for the command,   and will instead conform to the following ABNF:Calhoun, et al.             Standards Track                    [Page 88]

RFC 3588                Diameter Based Protocol           September 2003   Message Format   <answer-message> ::= < Diameter Header: code, ERR [PXY] >                     0*1< Session-Id >                        { Origin-Host }                        { Origin-Realm }                        { Result-Code }                        [ Origin-State-Id ]                        [ Error-Reporting-Host ]                        [ Proxy-Info ]                      * [ AVP ]   Note that the code used in the header is the same than the one found   in the request message, but with the 'R' bit cleared and the 'E' bit   set.  The 'P' bit in the header is set to the same value as the one   found in the request message.7.3.  Error-Message AVP   The Error-Message AVP (AVP Code 281) is of type UTF8String.  It MAY   accompany a Result-Code AVP as a human readable error message.  The   Error-Message AVP is not intended to be useful in real-time, and   SHOULD NOT be expected to be parsed by network entities.7.4.  Error-Reporting-Host AVP   The Error-Reporting-Host AVP (AVP Code 294) is of type   DiameterIdentity.  This AVP contains the identity of the Diameter   host that sent the Result-Code AVP to a value other than 2001   (Success), only if the host setting the Result-Code is different from   the one encoded in the Origin-Host AVP.  This AVP is intended to be   used for troubleshooting purposes, and MUST be set when the Result-   Code AVP indicates a failure.7.5.  Failed-AVP AVP   The Failed-AVP AVP (AVP Code 279) is of type Grouped and provides   debugging information in cases where a request is rejected or not   fully processed due to erroneous information in a specific AVP.  The   value of the Result-Code AVP will provide information on the reason   for the Failed-AVP AVP.   The possible reasons for this AVP are the presence of an improperly   constructed AVP, an unsupported or unrecognized AVP, an invalid AVP   value, the omission of a required AVP, the presence of an explicitly   excluded AVP (see tables inSection 10), or the presence of two or   more occurrences of an AVP which is restricted to 0, 1, or 0-1   occurrences.Calhoun, et al.             Standards Track                    [Page 89]

RFC 3588                Diameter Based Protocol           September 2003   A Diameter message MAY contain one Failed-AVP AVP, containing the   entire AVP that could not be processed successfully.  If the failure   reason is omission of a required AVP, an AVP with the missing AVP   code, the missing vendor id, and a zero filled payload of the minimum   required length for the omitted AVP will be added.   AVP Format      <Failed-AVP> ::= < AVP Header: 279 >                    1* {AVP}7.6.  Experimental-Result AVP   The Experimental-Result AVP (AVP Code 297) is of type Grouped, and   indicates whether a particular vendor-specific request was completed   successfully or whether an error occurred.  Its Data field has the   following ABNF grammar:   AVP Format      Experimental-Result ::= < AVP Header: 297 >                                 { Vendor-Id }                                 { Experimental-Result-Code }   The Vendor-Id AVP (seeSection 5.3.3) in this grouped AVP identifies   the vendor responsible for the assignment of the result code which   follows.  All Diameter answer messages defined in vendor-specific   applications MUST include either one Result-Code AVP or one   Experimental-Result AVP.7.7.  Experimental-Result-Code AVP   The Experimental-Result-Code AVP (AVP Code 298) is of type Unsigned32   and contains a vendor-assigned value representing the result of   processing the request.   It is recommended that vendor-specific result codes follow the same   conventions given for the Result-Code AVP regarding the different   types of result codes and the handling of errors (for non 2xxx   values).8.  Diameter User Sessions   Diameter can provide two different types of services to applications.   The first involves authentication and authorization, and can   optionally make use of accounting.  The second only makes use of   accounting.Calhoun, et al.             Standards Track                    [Page 90]

RFC 3588                Diameter Based Protocol           September 2003   When a service makes use of the authentication and/or authorization   portion of an application, and a user requests access to the network,   the Diameter client issues an auth request to its local server.  The   auth request is defined in a service specific Diameter application   (e.g., NASREQ).  The request contains a Session-Id AVP, which is used   in subsequent messages (e.g., subsequent authorization, accounting,   etc) relating to the user's session.  The Session-Id AVP is a means   for the client and servers to correlate a Diameter message with a   user session.   When a Diameter server authorizes a user to use network resources for   a finite amount of time, and it is willing to extend the   authorization via a future request, it MUST add the Authorization-   Lifetime AVP to the answer message.  The Authorization-Lifetime AVP   defines the maximum number of seconds a user MAY make use of the   resources before another authorization request is expected by the   server.  The Auth-Grace-Period AVP contains the number of seconds   following the expiration of the Authorization-Lifetime, after which   the server will release all state information related to the user's   session.  Note that if payment for services is expected by the   serving realm from the user's home realm, the Authorization-Lifetime   AVP, combined with the Auth-Grace-Period AVP, implies the maximum   length of the session the home realm is willing to be fiscally   responsible for.  Services provided past the expiration of the   Authorization-Lifetime and Auth-Grace-Period AVPs are the   responsibility of the access device.  Of course, the actual cost of   services rendered is clearly outside the scope of the protocol.   An access device that does not expect to send a re-authorization or a   session termination request to the server MAY include the Auth-   Session-State AVP with the value set to NO_STATE_MAINTAINED as a hint   to the server.  If the server accepts the hint, it agrees that since   no session termination message will be received once service to the   user is terminated, it cannot maintain state for the session.  If the   answer message from the server contains a different value in the   Auth-Session-State AVP (or the default value if the AVP is absent),   the access device MUST follow the server's directives.  Note that the   value NO_STATE_MAINTAINED MUST NOT be set in subsequent re-   authorization requests and answers.   The base protocol does not include any authorization request   messages, since these are largely application-specific and are   defined in a Diameter application document.  However, the base   protocol does define a set of messages that is used to terminate user   sessions.  These are used to allow servers that maintain state   information to free resources.Calhoun, et al.             Standards Track                    [Page 91]

RFC 3588                Diameter Based Protocol           September 2003   When a service only makes use of the Accounting portion of the   Diameter protocol, even in combination with an application, the   Session-Id is still used to identify user sessions.  However, the   session termination messages are not used, since a session is   signaled as being terminated by issuing an accounting stop message.8.1.  Authorization Session State Machine   This section contains a set of finite state machines, representing   the life cycle of Diameter sessions, and which MUST be observed by   all Diameter implementations that make use of the authentication   and/or authorization portion of a Diameter application.  The term   Service-Specific below refers to a message defined in a Diameter   application (e.g., Mobile IPv4, NASREQ).   There are four different authorization session state machines   supported in the Diameter base protocol.  The first two describe a   session in which the server is maintaining session state, indicated   by the value of the Auth-Session-State AVP (or its absence).  One   describes the session from a client perspective, the other from a   server perspective.  The second two state machines are used when the   server does not maintain session state.  Here again, one describes   the session from a client perspective, the other from a server   perspective.   When a session is moved to the Idle state, any resources that were   allocated for the particular session must be released.  Any event not   listed in the state machines MUST be considered as an error   condition, and an answer, if applicable, MUST be returned to the   originator of the message.   In the state table, the event 'Failure to send X' means that the   Diameter agent is unable to send command X to the desired   destination.  This could be due to the peer being down, or due to the   peer sending back a transient failure or temporary protocol error   notification DIAMETER_TOO_BUSY or DIAMETER_LOOP_DETECTED in the   Result-Code AVP of the corresponding Answer command.  The event 'X   successfully sent' is the complement of 'Failure to send X'.Calhoun, et al.             Standards Track                    [Page 92]

RFC 3588                Diameter Based Protocol           September 2003   The following state machine is observed by a client when state is   maintained on the server:                           CLIENT, STATEFUL   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Client or Device Requests      Send       Pending             access                         service                                            specific                                            auth req   Idle      ASR Received                   Send ASA   Idle             for unknown session            with                                            Result-Code                                            = UNKNOWN_                                            SESSION_ID   Pending   Successful Service-specific    Grant      Open             authorization answer           Access             received with default             Auth-Session-State value   Pending   Successful Service-specific    Sent STR   Discon             authorization answer received             but service not provided   Pending   Error processing successful    Sent STR   Discon             Service-specific authorization             answer   Pending   Failed Service-specific        Cleanup    Idle             authorization answer received   Open      User or client device          Send       Open             requests access to service     service                                            specific                                            auth req   Open      Successful Service-specific    Provide    Open             authorization answer received  Service   Open      Failed Service-specific        Discon.    Idle             authorization answer           user/device             received.   Open      Session-Timeout Expires on     Send STR   Discon             Access DeviceCalhoun, et al.             Standards Track                    [Page 93]

RFC 3588                Diameter Based Protocol           September 2003   Open      ASR Received,                  Send ASA   Discon             client will comply with        with             request to end the session     Result-Code                                            = SUCCESS,                                            Send STR.   Open      ASR Received,                  Send ASA   Open             client will not comply with    with             request to end the session     Result-Code                                            != SUCCESS   Open      Authorization-Lifetime +       Send STR   Discon             Auth-Grace-Period expires on             access device   Discon    ASR Received                   Send ASA   Discon   Discon    STA Received                   Discon.    Idle                                            user/device   The following state machine is observed by a server when it is   maintaining state for the session:                          SERVER, STATEFUL   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Service-specific authorization Send       Open             request received, and          successful             user is authorized             serv.                                            specific answer   Idle      Service-specific authorization Send       Idle             request received, and          failed serv.             user is not authorized         specific answer   Open      Service-specific authorization Send       Open             request received, and user     successful             is authorized                  serv. specific                                                  answer   Open      Service-specific authorization Send       Idle             request received, and user     failed serv.             is not authorized              specific                                            answer,                                            Cleanup   Open      Home server wants to           Send ASR   Discon             terminate the serviceCalhoun, et al.             Standards Track                    [Page 94]

RFC 3588                Diameter Based Protocol           September 2003   Open      Authorization-Lifetime (and    Cleanup    Idle             Auth-Grace-Period) expires             on home server.   Open      Session-Timeout expires on     Cleanup    Idle             home server   Discon    Failure to send ASR            Wait,      Discon                                            resend ASR   Discon    ASR successfully sent and      Cleanup    Idle             ASA Received with Result-Code   Not       ASA Received                   None       No Change.   Discon   Any       STR Received                   Send STA,  Idle                                            Cleanup.   The following state machine is observed by a client when state is not   maintained on the server:                           CLIENT, STATELESS   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Client or Device Requests      Send       Pending             access                         service                                            specific                                            auth req   Pending   Successful Service-specific    Grant      Open             authorization answer           Access             received with Auth-Session-             State set to             NO_STATE_MAINTAINED   Pending   Failed Service-specific        Cleanup    Idle             authorization answer             received   Open      Session-Timeout Expires on     Discon.    Idle             Access Device                  user/device   Open      Service to user is terminated  Discon.    Idle                                            user/deviceCalhoun, et al.             Standards Track                    [Page 95]

RFC 3588                Diameter Based Protocol           September 2003   The following state machine is observed by a server when it is not   maintaining state for the session:                           SERVER, STATELESS   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Service-specific authorization Send serv. Idle             request received, and          specific             successfully processed         answer8.2.  Accounting Session State Machine   The following state machines MUST be supported for applications that   have an accounting portion or that require only accounting services.   The first state machine is to be observed by clients.   SeeSection 9.7 for Accounting Command Codes andSection 9.8 for   Accounting AVPs.   The server side in the accounting state machine depends in some cases   on the particular application.  The Diameter base protocol defines a   default state machine that MUST be followed by all applications that   have not specified other state machines.  This is the second state   machine in this section described below.   The default server side state machine requires the reception of   accounting records in any order and at any time, and does not place   any standards requirement on the processing of these records.   Implementations of Diameter MAY perform checking, ordering,   correlation, fraud detection, and other tasks based on these records.   Both base Diameter AVPs as well as application specific AVPs MAY be   inspected as a part of these tasks.  The tasks can happen either   immediately after record reception or in a post-processing phase.   However, as these tasks are typically application or even policy   dependent, they are not standardized by the Diameter specifications.   Applications MAY define requirements on when to accept accounting   records based on the used value of Accounting-Realtime-Required AVP,   credit limits checks, and so on.   However, the Diameter base protocol defines one optional server side   state machine that MAY be followed by applications that require   keeping track of the session state at the accounting server.  Note   that such tracking is incompatible with the ability to sustain long   duration connectivity problems.  Therefore, the use of this state   machine is recommended only in applications where the value of the   Accounting-Realtime-Required AVP is DELIVER_AND_GRANT, and hence   accounting connectivity problems are required to cause the serviced   user to be disconnected.  Otherwise, records produced by the clientCalhoun, et al.             Standards Track                    [Page 96]

RFC 3588                Diameter Based Protocol           September 2003   may be lost by the server which no longer accepts them after the   connectivity is re-established.  This state machine is the third   state machine in this section.  The state machine is supervised by a   supervision session timer Ts, which the value should be reasonably   higher than the Acct_Interim_Interval value.  Ts MAY be set to two   times the value of the Acct_Interim_Interval so as to avoid the   accounting session in the Diameter server to change to Idle state in   case of short transient network failure.   Any event not listed in the state machines MUST be considered as an   error condition, and a corresponding answer, if applicable, MUST be   returned to the originator of the message.   In the state table, the event 'Failure to send' means that the   Diameter client is unable to communicate with the desired   destination.  This could be due to the peer being down, or due to the   peer sending back a transient failure or temporary protocol error   notification DIAMETER_OUT_OF_SPACE, DIAMETER_TOO_BUSY, or   DIAMETER_LOOP_DETECTED in the Result-Code AVP of the Accounting   Answer command.   The event 'Failed answer' means that the Diameter client received a   non-transient failure notification in the Accounting Answer command.   Note that the action 'Disconnect user/dev' MUST have an effect also   to the authorization session state table, e.g., cause the STR message   to be sent, if the given application has both   authentication/authorization and accounting portions.   The states PendingS, PendingI, PendingL, PendingE and PendingB stand   for pending states to wait for an answer to an accounting request   related to a Start, Interim, Stop, Event or buffered record,   respectively.                         CLIENT, ACCOUNTING   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Client or device requests      Send       PendingS             access                         accounting                                            start req.   Idle      Client or device requests      Send       PendingE             a one-time service             accounting                                            event req   Idle      Records in storage             Send       PendingB                                            recordCalhoun, et al.             Standards Track                    [Page 97]

RFC 3588                Diameter Based Protocol           September 2003   PendingS  Successful accounting                     Open             start answer received   PendingS  Failure to send and buffer     Store      Open             space available and realtime   Start             not equal to DELIVER_AND_GRANT Record   PendingS  Failure to send and no buffer             Open             space available and realtime             equal to GRANT_AND_LOSE   PendingS  Failure to send and no buffer  Disconnect Idle             space available and realtime   user/dev             not equal to             GRANT_AND_LOSE   PendingS  Failed accounting start answer            Open             received and realtime equal             to GRANT_AND_LOSE   PendingS  Failed accounting start answer Disconnect Idle             received and realtime not      user/dev             equal to GRANT_AND_LOSE   PendingS  User service terminated        Store      PendingS                                            stop                                            record   Open      Interim interval elapses       Send       PendingI                                            accounting                                            interim                                            record   Open      User service terminated        Send       PendingL                                            accounting                                            stop req.   PendingI  Successful accounting interim             Open             answer received   PendingI  Failure to send and (buffer    Store      Open             space available or old record  interim             can be overwritten) and        record             realtime not equal to             DELIVER_AND_GRANT   PendingI  Failure to send and no buffer             Open             space available and realtime             equal to GRANT_AND_LOSECalhoun, et al.             Standards Track                    [Page 98]

RFC 3588                Diameter Based Protocol           September 2003   PendingI  Failure to send and no buffer  Disconnect Idle             space available and realtime   user/dev             not equal to GRANT_AND_LOSE   PendingI  Failed accounting interim                 Open             answer received and realtime             equal to GRANT_AND_LOSE   PendingI  Failed accounting interim      Disconnect Idle             answer received and realtime   user/dev             not equal to GRANT_AND_LOSE   PendingI  User service terminated        Store      PendingI                                            stop                                            record   PendingE  Successful accounting                     Idle             event answer received   PendingE  Failure to send and buffer     Store      Idle             space available                event                                            record   PendingE  Failure to send and no buffer             Idle             space available   PendingE  Failed accounting event answer            Idle             received   PendingB  Successful accounting answer   Delete     Idle             received                       record   PendingB  Failure to send                           Idle   PendingB  Failed accounting answer       Delete     Idle             received                       record   PendingL  Successful accounting                     Idle             stop answer received   PendingL  Failure to send and buffer     Store      Idle             space available                stop                                            record   PendingL  Failure to send and no buffer             Idle             space available   PendingL  Failed accounting stop answer             Idle             receivedCalhoun, et al.             Standards Track                    [Page 99]

RFC 3588                Diameter Based Protocol           September 2003                    SERVER, STATELESS ACCOUNTING   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Accounting start request       Send       Idle             received, and successfully     accounting             processed.                     start                                            answer   Idle      Accounting event request       Send       Idle             received, and successfully     accounting             processed.                     event                                            answer   Idle      Interim record received,       Send       Idle             and successfully processed.    accounting                                            interim                                            answer   Idle      Accounting stop request        Send       Idle             received, and successfully     accounting             processed                      stop answer   Idle      Accounting request received,   Send       Idle             no space left to store         accounting             records                        answer,                                            Result-Code                                            = OUT_OF_                                            SPACE                         SERVER, STATEFUL ACCOUNTING   State     Event                          Action     New State   -------------------------------------------------------------   Idle      Accounting start request       Send       Open             received, and successfully     accounting             processed.                     start                                            answer,                                            Start Ts   Idle      Accounting event request       Send       Idle             received, and successfully     accounting             processed.                     event                                            answerCalhoun, et al.             Standards Track                   [Page 100]

RFC 3588                Diameter Based Protocol           September 2003   Idle      Accounting request received,   Send       Idle             no space left to store         accounting             records                        answer,                                            Result-Code                                            = OUT_OF_                                            SPACE   Open      Interim record received,       Send       Open             and successfully processed.    accounting                                            interim                                            answer,                                            Restart Ts   Open      Accounting stop request        Send       Idle             received, and successfully     accounting             processed                      stop answer,                                            Stop Ts   Open      Accounting request received,   Send       Idle             no space left to store         accounting             records                        answer,                                            Result-Code                                            = OUT_OF_                                            SPACE,                                            Stop Ts   Open      Session supervision timer Ts   Stop Ts    Idle             expired8.3.  Server-Initiated Re-Auth   A Diameter server may initiate a re-authentication and/or re-   authorization service for a particular session by issuing a Re-Auth-   Request (RAR).   For example, for pre-paid services, the Diameter server that   originally authorized a session may need some confirmation that the   user is still using the services.   An access device that receives a RAR message with Session-Id equal to   a currently active session MUST initiate a re-auth towards the user,   if the service supports this particular feature.  Each Diameter   application MUST state whether service-initiated re-auth is   supported, since some applications do not allow access devices to   prompt the user for re-auth.Calhoun, et al.             Standards Track                   [Page 101]

RFC 3588                Diameter Based Protocol           September 20038.3.1.  Re-Auth-Request   The Re-Auth-Request (RAR), indicated by the Command-Code set to 258   and the message flags' 'R' bit set, may be sent by any server to the   access device that is providing session service, to request that the   user be re-authenticated and/or re-authorized.   Message Format      <RAR>  ::= < Diameter Header: 258, REQ, PXY >                 < Session-Id >                 { Origin-Host }                 { Origin-Realm }                 { Destination-Realm }                 { Destination-Host }                 { Auth-Application-Id }                 { Re-Auth-Request-Type }                 [ User-Name ]                 [ Origin-State-Id ]               * [ Proxy-Info ]               * [ Route-Record ]               * [ AVP ]8.3.2.  Re-Auth-Answer   The Re-Auth-Answer (RAA), indicated by the Command-Code set to 258   and the message flags' 'R' bit clear, is sent in response to the RAR.   The Result-Code AVP MUST be present, and indicates the disposition of   the request.   A successful RAA message MUST be followed by an application-specific   authentication and/or authorization message.Calhoun, et al.             Standards Track                   [Page 102]

RFC 3588                Diameter Based Protocol           September 2003   Message Format      <RAA>  ::= < Diameter Header: 258, PXY >                 < Session-Id >                 { Result-Code }                 { Origin-Host }                 { Origin-Realm }                 [ User-Name ]                 [ Origin-State-Id ]                 [ Error-Message ]                 [ Error-Reporting-Host ]               * [ Failed-AVP ]               * [ Redirect-Host ]                 [ Redirect-Host-Usage ]                 [ Redirect-Host-Cache-Time ]               * [ Proxy-Info ]               * [ AVP ]8.4.  Session Termination   It is necessary for a Diameter server that authorized a session, for   which it is maintaining state, to be notified when that session is no   longer active, both for tracking purposes as well as to allow   stateful agents to release any resources that they may have provided   for the user's session.  For sessions whose state is not being   maintained, this section is not used.   When a user session that required Diameter authorization terminates,   the access device that provided the service MUST issue a Session-   Termination-Request (STR) message to the Diameter server that   authorized the service, to notify it that the session is no longer   active.  An STR MUST be issued when a user session terminates for any   reason, including user logoff, expiration of Session-Timeout,   administrative action, termination upon receipt of an Abort-Session-   Request (see below), orderly shutdown of the access device, etc.   The access device also MUST issue an STR for a session that was   authorized but never actually started.  This could occur, for   example, due to a sudden resource shortage in the access device, or   because the access device is unwilling to provide the type of service   requested in the authorization, or because the access device does not   support a mandatory AVP returned in the authorization, etc.   It is also possible that a session that was authorized is never   actually started due to action of a proxy.  For example, a proxy may   modify an authorization answer, converting the result from success to   failure, prior to forwarding the message to the access device.  If   the answer did not contain an Auth-Session-State AVP with the valueCalhoun, et al.             Standards Track                   [Page 103]

RFC 3588                Diameter Based Protocol           September 2003   NO_STATE_MAINTAINED, a proxy that causes an authorized session not to   be started MUST issue an STR to the Diameter server that authorized   the session, since the access device has no way of knowing that the   session had been authorized.   A Diameter server that receives an STR message MUST clean up   resources (e.g., session state) associated with the Session-Id   specified in the STR, and return a Session-Termination-Answer.   A Diameter server also MUST clean up resources when the Session-   Timeout expires, or when the Authorization-Lifetime and the Auth-   Grace-Period AVPs expires without receipt of a re-authorization   request, regardless of whether an STR for that session is received.   The access device is not expected to provide service beyond the   expiration of these timers; thus, expiration of either of these   timers implies that the access device may have unexpectedly shut   down.8.4.1.  Session-Termination-Request   The Session-Termination-Request (STR), indicated by the Command-Code   set to 275 and the Command Flags' 'R' bit set, is sent by the access   device to inform the Diameter Server that an authenticated and/or   authorized session is being terminated.   Message Format      <STR> ::= < Diameter Header: 275, REQ, PXY >                < Session-Id >                { Origin-Host }                { Origin-Realm }                { Destination-Realm }                { Auth-Application-Id }                { Termination-Cause }                [ User-Name ]                [ Destination-Host ]              * [ Class ]                [ Origin-State-Id ]              * [ Proxy-Info ]              * [ Route-Record ]              * [ AVP ]Calhoun, et al.             Standards Track                   [Page 104]

RFC 3588                Diameter Based Protocol           September 20038.4.2.  Session-Termination-Answer   The Session-Termination-Answer (STA), indicated by the Command-Code   set to 275 and the message flags' 'R' bit clear, is sent by the   Diameter Server to acknowledge the notification that the session has   been terminated.  The Result-Code AVP MUST be present, and MAY   contain an indication that an error occurred while servicing the STR.   Upon sending or receipt of the STA, the Diameter Server MUST release   all resources for the session indicated by the Session-Id AVP.  Any   intermediate server in the Proxy-Chain MAY also release any   resources, if necessary.   Message Format      <STA>  ::= < Diameter Header: 275, PXY >                 < Session-Id >                 { Result-Code }                 { Origin-Host }                 { Origin-Realm }                 [ User-Name ]               * [ Class ]                 [ Error-Message ]                 [ Error-Reporting-Host ]               * [ Failed-AVP ]                 [ Origin-State-Id ]               * [ Redirect-Host ]                 [ Redirect-Host-Usage ]                                    ^                 [ Redirect-Max-Cache-Time ]               * [ Proxy-Info ]               * [ AVP ]8.5.  Aborting a Session   A Diameter server may request that the access device stop providing   service for a particular session by issuing an Abort-Session-Request   (ASR).   For example, the Diameter server that originally authorized the   session may be required to cause that session to be stopped for   credit or other reasons that were not anticipated when the session   was first authorized.  On the other hand, an operator may maintain a   management server for the purpose of issuing ASRs to administratively   remove users from the network.   An access device that receives an ASR with Session-ID equal to a   currently active session MAY stop the session.  Whether the accessCalhoun, et al.             Standards Track                   [Page 105]

RFC 3588                Diameter Based Protocol           September 2003   device stops the session or not is implementation- and/or   configuration-dependent.  For example, an access device may honor   ASRs from certain agents only.  In any case, the access device MUST   respond with an Abort-Session-Answer, including a Result-Code AVP to   indicate what action it took.   Note that if the access device does stop the session upon receipt of   an ASR, it issues an STR to the authorizing server (which may or may   not be the agent issuing the ASR) just as it would if the session   were terminated for any other reason.8.5.1.  Abort-Session-Request   The Abort-Session-Request (ASR), indicated by the Command-Code set to   274 and the message flags' 'R' bit set, may be sent by any server to   the access device that is providing session service, to request that   the session identified by the Session-Id be stopped.   Message Format      <ASR>  ::= < Diameter Header: 274, REQ, PXY >                 < Session-Id >                 { Origin-Host }                 { Origin-Realm }                 { Destination-Realm }                 { Destination-Host }                 { Auth-Application-Id }                 [ User-Name ]                 [ Origin-State-Id ]               * [ Proxy-Info ]               * [ Route-Record ]               * [ AVP ]8.5.2.  Abort-Session-Answer   The Abort-Session-Answer (ASA), indicated by the Command-Code set to   274 and the message flags' 'R' bit clear, is sent in response to the   ASR.  The Result-Code AVP MUST be present, and indicates the   disposition of the request.   If the session identified by Session-Id in the ASR was successfully   terminated, Result-Code is set to DIAMETER_SUCCESS.  If the session   is not currently active, Result-Code is set to   DIAMETER_UNKNOWN_SESSION_ID.  If the access device does not stop the   session for any other reason, Result-Code is set to   DIAMETER_UNABLE_TO_COMPLY.Calhoun, et al.             Standards Track                   [Page 106]

RFC 3588                Diameter Based Protocol           September 2003   Message Format      <ASA>  ::= < Diameter Header: 274, PXY >                 < Session-Id >                 { Result-Code }                 { Origin-Host }                 { Origin-Realm }                 [ User-Name ]                 [ Origin-State-Id ]                 [ Error-Message ]                 [ Error-Reporting-Host ]               * [ Failed-AVP ]               * [ Redirect-Host ]                 [ Redirect-Host-Usage ]                 [ Redirect-Max-Cache-Time ]               * [ Proxy-Info ]               * [ AVP ]8.6.  Inferring Session Termination from Origin-State-Id   Origin-State-Id is used to allow rapid detection of terminated   sessions for which no STR would have been issued, due to   unanticipated shutdown of an access device.   By including Origin-State-Id in CER/CEA messages, an access device   allows a next-hop server to determine immediately upon connection   whether the device has lost its sessions since the last connection.   By including Origin-State-Id in request messages, an access device   also allows a server with which it communicates via proxy to make   such a determination.  However, a server that is not directly   connected with the access device will not discover that the access   device has been restarted unless and until it receives a new request   from the access device.  Thus, use of this mechanism across proxies   is opportunistic rather than reliable, but useful nonetheless.   When a Diameter server receives an Origin-State-Id that is greater   than the Origin-State-Id previously received from the same issuer, it   may assume that the issuer has lost state since the previous message   and that all sessions that were active under the lower Origin-State-   Id have been terminated.  The Diameter server MAY clean up all   session state associated with such lost sessions, and MAY also issues   STRs for all such lost sessions that were authorized on upstream   servers, to allow session state to be cleaned up globally.Calhoun, et al.             Standards Track                   [Page 107]

RFC 3588                Diameter Based Protocol           September 20038.7.  Auth-Request-Type AVP   The Auth-Request-Type AVP (AVP Code 274) is of type Enumerated and is   included in application-specific auth requests to inform the peers   whether a user is to be authenticated only, authorized only or both.   Note any value other than both MAY cause RADIUS interoperability   issues.  The following values are defined:   AUTHENTICATE_ONLY          1      The request being sent is for authentication only, and MUST      contain the relevant application specific authentication AVPs that      are needed by the Diameter server to authenticate the user.   AUTHORIZE_ONLY             2      The request being sent is for authorization only, and MUST contain      the application specific authorization AVPs that are necessary to      identify the service being requested/offered.   AUTHORIZE_AUTHENTICATE     3      The request contains a request for both authentication and      authorization.  The request MUST include both the relevant      application specific authentication information, and authorization      information necessary to identify the service being      requested/offered.8.8.  Session-Id AVP   The Session-Id AVP (AVP Code 263) is of type UTF8String and is used   to identify a specific session (seeSection 8).  All messages   pertaining to a specific session MUST include only one Session-Id AVP   and the same value MUST be used throughout the life of a session.   When present, the Session-Id SHOULD appear immediately following the   Diameter Header (seeSection 3).   The Session-Id MUST be globally and eternally unique, as it is meant   to uniquely identify a user session without reference to any other   information, and may be needed to correlate historical authentication   information with accounting information.  The Session-Id includes a   mandatory portion and an implementation-defined portion; a   recommended format for the implementation-defined portion is outlined   below.   The Session-Id MUST begin with the sender's identity encoded in the   DiameterIdentity type (seeSection 4.4).  The remainder of the   Session-Id is delimited by a ";" character, and MAY be any sequence   that the client can guarantee to be eternally unique; however, the   following format is recommended, (square brackets [] indicate an   optional element):Calhoun, et al.             Standards Track                   [Page 108]

RFC 3588                Diameter Based Protocol           September 2003   <DiameterIdentity>;<high 32 bits>;<low 32 bits>[;<optional value>]   <high 32 bits> and <low 32 bits> are decimal representations of the   high and low 32 bits of a monotonically increasing 64-bit value.  The   64-bit value is rendered in two part to simplify formatting by 32-bit   processors.  At startup, the high 32 bits of the 64-bit value MAY be   initialized to the time, and the low 32 bits MAY be initialized to   zero.  This will for practical purposes eliminate the possibility of   overlapping Session-Ids after a reboot, assuming the reboot process   takes longer than a second.  Alternatively, an implementation MAY   keep track of the increasing value in non-volatile memory.   <optional value> is implementation specific but may include a modem's   device Id, a layer 2 address, timestamp, etc.   Example, in which there is no optional value:      accesspoint7.acme.com;1876543210;523   Example, in which there is an optional value:      accesspoint7.acme.com;1876543210;523;mobile@200.1.1.88   The Session-Id is created by the Diameter application initiating the   session, which in most cases is done by the client.  Note that a   Session-Id MAY be used for both the authorization and accounting   commands of a given application.8.9.  Authorization-Lifetime AVP   The Authorization-Lifetime AVP (AVP Code 291) is of type Unsigned32   and contains the maximum number of seconds of service to be provided   to the user before the user is to be re-authenticated and/or re-   authorized.  Great care should be taken when the Authorization-   Lifetime value is determined, since a low, non-zero, value could   create significant Diameter traffic, which could congest both the   network and the agents.   A value of zero (0) means that immediate re-auth is necessary by the   access device.  This is typically used in cases where multiple   authentication methods are used, and a successful auth response with   this AVP set to zero is used to signal that the next authentication   method is to be immediately initiated.  The absence of this AVP, or a   value of all ones (meaning all bits in the 32 bit field are set to   one) means no re-auth is expected.   If both this AVP and the Session-Timeout AVP are present in a   message, the value of the latter MUST NOT be smaller than the   Authorization-Lifetime AVP.Calhoun, et al.             Standards Track                   [Page 109]

RFC 3588                Diameter Based Protocol           September 2003   An Authorization-Lifetime AVP MAY be present in re-authorization   messages, and contains the number of seconds the user is authorized   to receive service from the time the re-auth answer message is   received by the access device.   This AVP MAY be provided by the client as a hint of the maximum   lifetime that it is willing to accept.  However, the server MAY   return a value that is equal to, or smaller, than the one provided by   the client.8.10.  Auth-Grace-Period AVP   The Auth-Grace-Period AVP (AVP Code 276) is of type Unsigned32 and   contains the number of seconds the Diameter server will wait   following the expiration of the Authorization-Lifetime AVP before   cleaning up resources for the session.8.11.  Auth-Session-State AVP   The Auth-Session-State AVP (AVP Code 277) is of type Enumerated and   specifies whether state is maintained for a particular session.  The   client MAY include this AVP in requests as a hint to the server, but   the value in the server's answer message is binding.  The following   values are supported:   STATE_MAINTAINED              0      This value is used to specify that session state is being      maintained, and the access device MUST issue a session termination      message when service to the user is terminated.  This is the      default value.   NO_STATE_MAINTAINED           1      This value is used to specify that no session termination messages      will be sent by the access device upon expiration of the      Authorization-Lifetime.8.12.  Re-Auth-Request-Type AVP   The Re-Auth-Request-Type AVP (AVP Code 285) is of type Enumerated and   is included in application-specific auth answers to inform the client   of the action expected upon expiration of the Authorization-Lifetime.   If the answer message contains an Authorization-Lifetime AVP with a   positive value, the Re-Auth-Request-Type AVP MUST be present in an   answer message.  The following values are defined:Calhoun, et al.             Standards Track                   [Page 110]

RFC 3588                Diameter Based Protocol           September 2003   AUTHORIZE_ONLY             0      An authorization only re-auth is expected upon expiration of the      Authorization-Lifetime.  This is the default value if the AVP is      not present in answer messages that include the Authorization-      Lifetime.   AUTHORIZE_AUTHENTICATE     1      An authentication and authorization re-auth is expected upon      expiration of the Authorization-Lifetime.8.13.  Session-Timeout AVP   The Session-Timeout AVP (AVP Code 27) [RADIUS] is of type Unsigned32   and contains the maximum number of seconds of service to be provided   to the user before termination of the session.  When both the   Session-Timeout and the Authorization-Lifetime AVPs are present in an   answer message, the former MUST be equal to or greater than the value   of the latter.   A session that terminates on an access device due to the expiration   of the Session-Timeout MUST cause an STR to be issued, unless both   the access device and the home server had previously agreed that no   session termination messages would be sent (seeSection 8.9).   A Session-Timeout AVP MAY be present in a re-authorization answer   message, and contains the remaining number of seconds from the   beginning of the re-auth.   A value of zero, or the absence of this AVP, means that this session   has an unlimited number of seconds before termination.   This AVP MAY be provided by the client as a hint of the maximum   timeout that it is willing to accept.  However, the server MAY return   a value that is equal to, or smaller, than the one provided by the   client.8.14.  User-Name AVP   The User-Name AVP (AVP Code 1) [RADIUS] is of type UTF8String, which   contains the User-Name, in a format consistent with the NAI   specification [NAI].8.15.  Termination-Cause AVP   The Termination-Cause AVP (AVP Code 295) is of type Enumerated, and   is used to indicate the reason why a session was terminated on the   access device.  The following values are defined:Calhoun, et al.             Standards Track                   [Page 111]

RFC 3588                Diameter Based Protocol           September 2003   DIAMETER_LOGOUT                   1      The user initiated a disconnect   DIAMETER_SERVICE_NOT_PROVIDED     2      This value is used when the user disconnected prior to the receipt      of the authorization answer message.   DIAMETER_BAD_ANSWER               3      This value indicates that the authorization answer received by the      access device was not processed successfully.   DIAMETER_ADMINISTRATIVE           4      The user was not granted access, or was disconnected, due to      administrative reasons, such as the receipt of a Abort-Session-      Request message.   DIAMETER_LINK_BROKEN              5      The communication to the user was abruptly disconnected.   DIAMETER_AUTH_EXPIRED             6      The user's access was terminated since its authorized session time      has expired.   DIAMETER_USER_MOVED               7      The user is receiving services from another access device.   DIAMETER_SESSION_TIMEOUT          8      The user's session has timed out, and service has been terminated.8.16.  Origin-State-Id AVP   The Origin-State-Id AVP (AVP Code 278), of type Unsigned32, is a   monotonically increasing value that is advanced whenever a Diameter   entity restarts with loss of previous state, for example upon reboot.   Origin-State-Id MAY be included in any Diameter message, including   CER.   A Diameter entity issuing this AVP MUST create a higher value for   this AVP each time its state is reset.  A Diameter entity MAY set   Origin-State-Id to the time of startup, or it MAY use an incrementing   counter retained in non-volatile memory across restarts.   The Origin-State-Id, if present, MUST reflect the state of the entity   indicated by Origin-Host.  If a proxy modifies Origin-Host, it MUST   either remove Origin-State-Id or modify it appropriately as well.Calhoun, et al.             Standards Track                   [Page 112]

RFC 3588                Diameter Based Protocol           September 2003   Typically, Origin-State-Id is used by an access device that always   starts up with no active sessions; that is, any session active prior   to restart will have been lost.  By including Origin-State-Id in a   message, it allows other Diameter entities to infer that sessions   associated with a lower Origin-State-Id are no longer active.  If an   access device does not intend for such inferences to be made, it MUST   either not include Origin-State-Id in any message, or set its value   to 0.8.17.  Session-Binding AVP   The Session-Binding AVP (AVP Code 270) is of type Unsigned32, and MAY   be present in application-specific authorization answer messages.  If   present, this AVP MAY inform the Diameter client that all future   application-specific re-auth messages for this session MUST be sent   to the same authorization server.  This AVP MAY also specify that a   Session-Termination-Request message for this session MUST be sent to   the same authorizing server.   This field is a bit mask, and the following bits have been defined:   RE_AUTH                    1      When set, future re-auth messages for this session MUST NOT      include the Destination-Host AVP.  When cleared, the default      value, the Destination-Host AVP MUST be present in all re-auth      messages for this session.   STR                        2      When set, the STR message for this session MUST NOT include the      Destination-Host AVP.  When cleared, the default value, the      Destination-Host AVP MUST be present in the STR message for this      session.   ACCOUNTING                 4      When set, all accounting messages for this session MUST NOT      include the Destination-Host AVP.  When cleared, the default      value, the Destination-Host AVP, if known, MUST be present in all      accounting messages for this session.8.18.  Session-Server-Failover AVP   The Session-Server-Failover AVP (AVP Code 271) is of type Enumerated,   and MAY be present in application-specific authorization answer   messages that either do not include the Session-Binding AVP or   include the Session-Binding AVP with any of the bits set to a zero   value.  If present, this AVP MAY inform the Diameter client that if aCalhoun, et al.             Standards Track                   [Page 113]

RFC 3588                Diameter Based Protocol           September 2003   re-auth or STR message fails due to a delivery problem, the Diameter   client SHOULD issue a subsequent message without the Destination-Host   AVP.  When absent, the default value is REFUSE_SERVICE.   The following values are supported:   REFUSE_SERVICE             0      If either the re-auth or the STR message delivery fails, terminate      service with the user, and do not attempt any subsequent attempts.   TRY_AGAIN                  1      If either the re-auth or the STR message delivery fails, resend      the failed message without the Destination-Host AVP present.   ALLOW_SERVICE              2      If re-auth message delivery fails, assume that re-authorization      succeeded.  If STR message delivery fails, terminate the session.   TRY_AGAIN_ALLOW_SERVICE    3      If either the re-auth or the STR message delivery fails, resend      the failed message without the Destination-Host AVP present.  If      the second delivery fails for re-auth, assume re-authorization      succeeded.  If the second delivery fails for STR, terminate the      session.8.19.  Multi-Round-Time-Out AVP   The Multi-Round-Time-Out AVP (AVP Code 272) is of type Unsigned32,   and SHOULD be present in application-specific authorization answer   messages whose Result-Code AVP is set to DIAMETER_MULTI_ROUND_AUTH.   This AVP contains the maximum number of seconds that the access   device MUST provide the user in responding to an authentication   request.8.20.  Class AVP   The Class AVP (AVP Code 25) is of type OctetString and is used to by   Diameter servers to return state information to the access device.   When one or more Class AVPs are present in application-specific   authorization answer messages, they MUST be present in subsequent   re-authorization, session termination and accounting messages.  Class   AVPs found in a re-authorization answer message override the ones   found in any previous authorization answer message.  Diameter server   implementations SHOULD NOT return Class AVPs that require more than   4096 bytes of storage on the Diameter client.  A Diameter client that   receives Class AVPs whose size exceeds local available storage MUST   terminate the session.Calhoun, et al.             Standards Track                   [Page 114]

RFC 3588                Diameter Based Protocol           September 20038.21.  Event-Timestamp AVP   The Event-Timestamp (AVP Code 55) is of type Time, and MAY be   included in an Accounting-Request and Accounting-Answer messages to   record the time that the reported event occurred, in seconds since   January 1, 1900 00:00 UTC.9.  Accounting   This accounting protocol is based on a server directed model with   capabilities for real-time delivery of accounting information.   Several fault resilience methods [ACCMGMT] have been built in to the   protocol in order minimize loss of accounting data in various fault   situations and under different assumptions about the capabilities of   the used devices.9.1.  Server Directed Model   The server directed model means that the device generating the   accounting data gets information from either the authorization server   (if contacted) or the accounting server regarding the way accounting   data shall be forwarded.  This information includes accounting record   timeliness requirements.   As discussed in [ACCMGMT], real-time transfer of accounting records   is a requirement, such as the need to perform credit limit checks and   fraud detection.  Note that batch accounting is not a requirement,   and is therefore not supported by Diameter.  Should batched   accounting be required in the future, a new Diameter application will   need to be created, or it could be handled using another protocol.   Note, however, that even if at the Diameter layer accounting requests   are processed one by one, transport protocols used under Diameter   typically batch several requests in the same packet under heavy   traffic conditions.  This may be sufficient for many applications.   The authorization server (chain) directs the selection of proper   transfer strategy, based on its knowledge of the user and   relationships of roaming partnerships.  The server (or agents) uses   the Acct-Interim-Interval and Accounting-Realtime-Required AVPs to   control the operation of the Diameter peer operating as a client.   The Acct-Interim-Interval AVP, when present, instructs the Diameter   node acting as a client to produce accounting records continuously   even during a session.  Accounting-Realtime-Required AVP is used to   control the behavior of the client when the transfer of accounting   records from the Diameter client is delayed or unsuccessful.Calhoun, et al.             Standards Track                   [Page 115]

RFC 3588                Diameter Based Protocol           September 2003   The Diameter accounting server MAY override the interim interval or   the realtime requirements by including the Acct-Interim-Interval or   Accounting-Realtime-Required AVP in the Accounting-Answer message.   When one of these AVPs is present, the latest value received SHOULD   be used in further accounting activities for the same session.9.2.  Protocol Messages   A Diameter node that receives a successful authentication and/or   authorization messages from the Home AAA server MUST collect   accounting information for the session.  The Accounting-Request   message is used to transmit the accounting information to the Home   AAA server, which MUST reply with the Accounting-Answer message to   confirm reception.  The Accounting-Answer message includes the   Result-Code AVP, which MAY indicate that an error was present in the   accounting message.  A rejected Accounting-Request message MAY cause   the user's session to be terminated, depending on the value of the   Accounting-Realtime-Required AVP received earlier for the session in   question.   Each Diameter Accounting protocol message MAY be compressed, in order   to reduce network bandwidth usage.  If IPsec and IKE are used to   secure the Diameter session, then IP compression [IPComp] MAY be used   and IKE [IKE] MAY be used to negotiate the compression parameters.   If TLS is used to secure the Diameter session, then TLS compression   [TLS] MAY be used.9.3.  Application document requirements   Each Diameter application (e.g., NASREQ, MobileIP), MUST define their   Service-Specific AVPs that MUST be present in the Accounting-Request   message in a section entitled "Accounting AVPs".  The application   MUST assume that the AVPs described in this document will be present   in all Accounting messages, so only their respective service-specific   AVPs need to be defined in this section.9.4.  Fault Resilience   Diameter Base protocol mechanisms are used to overcome small message   loss and network faults of temporary nature.   Diameter peers acting as clients MUST implement the use of failover   to guard against server failures and certain network failures.   Diameter peers acting as agents or related off-line processing   systems MUST detect duplicate accounting records caused by the   sending of same record to several servers and duplication of messagesCalhoun, et al.             Standards Track                   [Page 116]

RFC 3588                Diameter Based Protocol           September 2003   in transit.  This detection MUST be based on the inspection of the   Session-Id and Accounting-Record-Number AVP pairs.Appendix C   discusses duplicate detection needs and implementation issues.   Diameter clients MAY have non-volatile memory for the safe storage of   accounting records over reboots or extended network failures, network   partitions, and server failures.  If such memory is available, the   client SHOULD store new accounting records there as soon as the   records are created and until a positive acknowledgement of their   reception from the Diameter Server has been received.  Upon a reboot,   the client MUST starting sending the records in the non-volatile   memory to the accounting server with appropriate modifications in   termination cause, session length, and other relevant information in   the records.   A further application of this protocol may include AVPs to control   how many accounting records may at most be stored in the Diameter   client without committing them to the non-volatile memory or   transferring them to the Diameter server.   The client SHOULD NOT remove the accounting data from any of its   memory areas before the correct Accounting-Answer has been received.   The client MAY remove oldest, undelivered or yet unacknowledged   accounting data if it runs out of resources such as memory.  It is an   implementation dependent matter for the client to accept new sessions   under this condition.9.5.  Accounting Records   In all accounting records, the Session-Id AVP MUST be present; the   User-Name AVP MUST be present if it is available to the Diameter   client.  If strong authentication across agents is required, end-to-   end security may be used for authentication purposes.   Different types of accounting records are sent depending on the   actual type of accounted service and the authorization server's   directions for interim accounting.  If the accounted service is a   one-time event, meaning that the start and stop of the event are   simultaneous, then the Accounting-Record-Type AVP MUST be present and   set to the value EVENT_RECORD.   If the accounted service is of a measurable length, then the AVP MUST   use the values START_RECORD, STOP_RECORD, and possibly,   INTERIM_RECORD.  If the authorization server has not directed interim   accounting to be enabled for the session, two accounting records MUST   be generated for each service of type session.  When the initialCalhoun, et al.             Standards Track                   [Page 117]

RFC 3588                Diameter Based Protocol           September 2003   Accounting-Request for a given session is sent, the Accounting-   Record-Type AVP MUST be set to the value START_RECORD.  When the last   Accounting-Request is sent, the value MUST be STOP_RECORD.   If the authorization server has directed interim accounting to be   enabled, the Diameter client MUST produce additional records between   the START_RECORD and STOP_RECORD, marked INTERIM_RECORD.  The   production of these records is directed by Acct-Interim-Interval as   well as any re-authentication or re-authorization of the session. The   Diameter client MUST overwrite any previous interim accounting   records that are locally stored for delivery, if a new record is   being generated for the same session.  This ensures that only one   pending interim record can exist on an access device for any given   session.   A particular value of Accounting-Sub-Session-Id MUST appear only in   one sequence of accounting records from a DIAMETER client, except for   the purposes of retransmission.  The one sequence that is sent MUST   be either one record with Accounting-Record-Type AVP set to the value   EVENT_RECORD, or several records starting with one having the value   START_RECORD, followed by zero or more INTERIM_RECORD and a single   STOP_RECORD.  A particular Diameter application specification MUST   define the type of sequences that MUST be used.9.6.  Correlation of Accounting Records   The Diameter protocol's Session-Id AVP, which is globally unique (seeSection 8.8), is used during the authorization phase to identify a   particular session.  Services that do not require any authorization   still use the Session-Id AVP to identify sessions.  Accounting   messages MAY use a different Session-Id from that sent in   authorization messages.  Specific applications MAY require different   a Session-ID for accounting messages.   However, there are certain applications that require multiple   accounting sub-sessions.  Such applications would send messages with   a constant Session-Id AVP, but a different Accounting-Sub-Session-Id   AVP.  In these cases, correlation is performed using the Session-Id.   It is important to note that receiving a STOP_RECORD with no   Accounting-Sub-Session-Id AVP when sub-sessions were originally used   in the START_RECORD messages implies that all sub-sessions are   terminated.   Furthermore, there are certain applications where a user receives   service from different access devices (e.g., Mobile IPv4), each with   their own unique Session-Id.  In such cases, the Acct-Multi-Session-   Id AVP is used for correlation.  During authorization, a server thatCalhoun, et al.             Standards Track                   [Page 118]

RFC 3588                Diameter Based Protocol           September 2003   determines that a request is for an existing session SHOULD include   the Acct-Multi-Session-Id AVP, which the access device MUST include   in all subsequent accounting messages.   The Acct-Multi-Session-Id AVP MAY include the value of the original   Session-Id.  It's contents are implementation specific, but MUST be   globally unique across other Acct-Multi-Session-Id, and MUST NOT   change during the life of a session.   A Diameter application document MUST define the exact concept of a   session that is being accounted, and MAY define the concept of a   multi-session.  For instance, the NASREQ DIAMETER application treats   a single PPP connection to a Network Access Server as one session,   and a set of Multilink PPP sessions as one multi-session.9.7.  Accounting Command-Codes   This section defines Command-Code values that MUST be supported by   all Diameter implementations that provide Accounting services.9.7.1.  Accounting-Request   The Accounting-Request (ACR) command, indicated by the Command-Code   field set to 271 and the Command Flags' 'R' bit set, is sent by a   Diameter node, acting as a client, in order to exchange accounting   information with a peer.   One of Acct-Application-Id and Vendor-Specific-Application-Id AVPs   MUST be present.  If the Vendor-Specific-Application-Id grouped AVP   is present, it must have an Acct-Application-Id inside.   The AVP listed below SHOULD include service specific accounting AVPs,   as described inSection 9.3.Calhoun, et al.             Standards Track                   [Page 119]

RFC 3588                Diameter Based Protocol           September 2003   Message Format      <ACR> ::= < Diameter Header: 271, REQ, PXY >                < Session-Id >                { Origin-Host }                { Origin-Realm }                { Destination-Realm }                { Accounting-Record-Type }                { Accounting-Record-Number }                [ Acct-Application-Id ]                [ Vendor-Specific-Application-Id ]                [ User-Name ]                [ Accounting-Sub-Session-Id ]                [ Acct-Session-Id ]                [ Acct-Multi-Session-Id ]                [ Acct-Interim-Interval ]                [ Accounting-Realtime-Required ]                [ Origin-State-Id ]                [ Event-Timestamp ]              * [ Proxy-Info ]              * [ Route-Record ]              * [ AVP ]9.7.2.  Accounting-Answer   The Accounting-Answer (ACA) command, indicated by the Command-Code   field set to 271 and the Command Flags' 'R' bit cleared, is used to   acknowledge an Accounting-Request command.  The Accounting-Answer   command contains the same Session-Id and includes the usage AVPs only   if CMS is in use when sending this command.  Note that the inclusion   of the usage AVPs when CMS is not being used leads to unnecessarily   large answer messages, and can not be used as a server's proof of the   receipt of these AVPs in an end-to-end fashion.  If the Accounting-   Request was protected by end-to-end security, then the corresponding   ACA message MUST be protected by end-to-end security.   Only the target Diameter Server, known as the home Diameter Server,   SHOULD respond with the Accounting-Answer command.   One of Acct-Application-Id and Vendor-Specific-Application-Id AVPs   MUST be present.  If the Vendor-Specific-Application-Id grouped AVP   is present, it must have an Acct-Application-Id inside.   The AVP listed below SHOULD include service specific accounting AVPs,   as described inSection 9.3.Calhoun, et al.             Standards Track                   [Page 120]

RFC 3588                Diameter Based Protocol           September 2003   Message Format      <ACA> ::= < Diameter Header: 271, PXY >                < Session-Id >                { Result-Code }                { Origin-Host }                { Origin-Realm }                { Accounting-Record-Type }                { Accounting-Record-Number }                [ Acct-Application-Id ]                [ Vendor-Specific-Application-Id ]                [ User-Name ]                [ Accounting-Sub-Session-Id ]                [ Acct-Session-Id ]                [ Acct-Multi-Session-Id ]                [ Error-Reporting-Host ]                [ Acct-Interim-Interval ]                [ Accounting-Realtime-Required ]                [ Origin-State-Id ]                [ Event-Timestamp ]              * [ Proxy-Info ]              * [ AVP ]9.8.  Accounting AVPs   This section contains AVPs that describe accounting usage information   related to a specific session.9.8.1.  Accounting-Record-Type AVP   The Accounting-Record-Type AVP (AVP Code 480) is of type Enumerated   and contains the type of accounting record being sent.  The following   values are currently defined for the Accounting-Record-Type AVP:   EVENT_RECORD                    1      An Accounting Event Record is used to indicate that a one-time      event has occurred (meaning that the start and end of the event      are simultaneous).  This record contains all information relevant      to the service, and is the only record of the service.   START_RECORD                    2      An Accounting Start, Interim, and Stop Records are used to      indicate that a service of a measurable length has been given.  An      Accounting Start Record is used to initiate an accounting session,      and contains accounting information that is relevant to the      initiation of the session.Calhoun, et al.             Standards Track                   [Page 121]

RFC 3588                Diameter Based Protocol           September 2003   INTERIM_RECORD                  3      An Interim Accounting Record contains cumulative accounting      information for an existing accounting session.  Interim      Accounting Records SHOULD be sent every time a re-authentication      or re-authorization occurs.  Further, additional interim record      triggers MAY be defined by application-specific Diameter      applications.  The selection of whether to use INTERIM_RECORD      records is done by the Acct-Interim-Interval AVP.   STOP_RECORD                     4      An Accounting Stop Record is sent to terminate an accounting      session and contains cumulative accounting information relevant to      the existing session.9.8.2.  Acct-Interim-Interval   The Acct-Interim-Interval AVP (AVP Code 85) is of type Unsigned32 and   is sent from the Diameter home authorization server to the Diameter   client.  The client uses information in this AVP to decide how and   when to produce accounting records.  With different values in this   AVP, service sessions can result in one, two, or two+N accounting   records, based on the needs of the home-organization.  The following   accounting record production behavior is directed by the inclusion of   this AVP:   1. The omission of the Acct-Interim-Interval AVP or its inclusion      with Value field set to 0 means that EVENT_RECORD, START_RECORD,      and STOP_RECORD are produced, as appropriate for the service.   2. The inclusion of the AVP with Value field set to a non-zero value      means that INTERIM_RECORD records MUST be produced between the      START_RECORD and STOP_RECORD records.  The Value field of this AVP      is the nominal interval between these records in seconds.  The      Diameter node that originates the accounting information, known as      the client, MUST produce the first INTERIM_RECORD record roughly      at the time when this nominal interval has elapsed from the      START_RECORD, the next one again as the interval has elapsed once      more, and so on until the session ends and a STOP_RECORD record is      produced.      The client MUST ensure that the interim record production times      are randomized so that large accounting message storms are not      created either among records or around a common service start      time.Calhoun, et al.             Standards Track                   [Page 122]

RFC 3588                Diameter Based Protocol           September 20039.8.3.  Accounting-Record-Number AVP   The Accounting-Record-Number AVP (AVP Code 485) is of type Unsigned32   and identifies this record within one session.  As Session-Id AVPs   are globally unique, the combination of Session-Id and Accounting-   Record-Number AVPs is also globally unique, and can be used in   matching accounting records with confirmations.  An easy way to   produce unique numbers is to set the value to 0 for records of type   EVENT_RECORD and START_RECORD, and set the value to 1 for the first   INTERIM_RECORD, 2 for the second, and so on until the value for   STOP_RECORD is one more than for the last INTERIM_RECORD.9.8.4.  Acct-Session-Id AVP   The Acct-Session-Id AVP (AVP Code 44) is of type OctetString is only   used when RADIUS/Diameter translation occurs.  This AVP contains the   contents of the RADIUS Acct-Session-Id attribute.9.8.5.  Acct-Multi-Session-Id AVP   The Acct-Multi-Session-Id AVP (AVP Code 50) is of type UTF8String,   following the format specified inSection 8.8.  The Acct-Multi-   Session-Id AVP is used to link together multiple related accounting   sessions, where each session would have a unique Session-Id, but the   same Acct-Multi-Session-Id AVP.  This AVP MAY be returned by the   Diameter server in an authorization answer, and MUST be used in all   accounting messages for the given session.9.8.6.  Accounting-Sub-Session-Id AVP   The Accounting-Sub-Session-Id AVP (AVP Code 287) is of type   Unsigned64 and contains the accounting sub-session identifier.  The   combination of the Session-Id and this AVP MUST be unique per sub-   session, and the value of this AVP MUST be monotonically increased by   one for all new sub-sessions.  The absence of this AVP implies no   sub-sessions are in use, with the exception of an Accounting-Request   whose Accounting-Record-Type is set to STOP_RECORD.  A STOP_RECORD   message with no Accounting-Sub-Session-Id AVP present will signal the   termination of all sub-sessions for a given Session-Id.9.8.7.  Accounting-Realtime-Required AVP   The Accounting-Realtime-Required AVP (AVP Code 483) is of type   Enumerated and is sent from the Diameter home authorization server to   the Diameter client or in the Accounting-Answer from the accounting   server.  The client uses information in this AVP to decide what to do   if the sending of accounting records to the accounting server has   been temporarily prevented due to, for instance, a network problem.Calhoun, et al.             Standards Track                   [Page 123]

RFC 3588                Diameter Based Protocol           September 2003   DELIVER_AND_GRANT                           1      The AVP with Value field set to DELIVER_AND_GRANT means that the      service MUST only be granted as long as there is a connection to      an accounting server.  Note that the set of alternative accounting      servers are treated as one server in this sense.  Having to move      the accounting record stream to a backup server is not a reason to      discontinue the service to the user.   GRANT_AND_STORE                             2      The AVP with Value field set to GRANT_AND_STORE means that service      SHOULD be granted if there is a connection, or as long as records      can still be stored as described inSection 9.4.      This is the default behavior if the AVP isn't included in the      reply from the authorization server.   GRANT_AND_LOSE                              3      The AVP with Value field set to GRANT_AND_LOSE means that service      SHOULD be granted even if the records can not be delivered or      stored.10.  AVP Occurrence Table   The following tables presents the AVPs defined in this document, and   specifies in which Diameter messages they MAY, or MAY NOT be present.   Note that AVPs that can only be present within a Grouped AVP are not   represented in this table.   The table uses the following symbols:   0     The AVP MUST NOT be present in the message.   0+    Zero or more instances of the AVP MAY be present in the         message.   0-1   Zero or one instance of the AVP MAY be present in the         message.  It is considered an error if there are more than         one instance of the AVP.   1     One instance of the AVP MUST be present in the message.   1+    At least one instance of the AVP MUST be present in the         message.10.1.  Base Protocol Command AVP Table   The table in this section is limited to the non-accounting Command   Codes defined in this specification.Calhoun, et al.             Standards Track                   [Page 124]

RFC 3588                Diameter Based Protocol           September 2003                       +-----------------------------------------------+                       |                  Command-Code                 |                       +---+---+---+---+---+---+---+---+---+---+---+---+   Attribute Name      |CER|CEA|DPR|DPA|DWR|DWA|RAR|RAA|ASR|ASA|STR|STA|   --------------------+---+---+---+---+---+---+---+---+---+---+---+---+   Acct-Interim-       |0  |0  |0  |0  |0  |0  |0-1|0  |0  |0  |0  |0  |     Interval          |   |   |   |   |   |   |   |   |   |   |   |   |   Accounting-Realtime-|0  |0  |0  |0  |0  |0  |0-1|0  |0  |0  |0  |0  |     Required          |   |   |   |   |   |   |   |   |   |   |   |   |   Acct-Application-Id |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Auth-Application-Id |0+ |0+ |0  |0  |0  |0  |1  |0  |1  |0  |1  |0  |   Auth-Grace-Period   |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Auth-Request-Type   |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Auth-Session-State  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Authorization-      |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |     Lifetime          |   |   |   |   |   |   |   |   |   |   |   |   |   Class               |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0+ |0+ |   Destination-Host    |0  |0  |0  |0  |0  |0  |1  |0  |1  |0  |0-1|0  |   Destination-Realm   |0  |0  |0  |0  |0  |0  |1  |0  |1  |0  |1  |0  |   Disconnect-Cause    |0  |0  |1  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Error-Message       |0  |0-1|0  |0-1|0  |0-1|0  |0-1|0  |0-1|0  |0-1|   Error-Reporting-Host|0  |0  |0  |0  |0  |0  |0  |0-1|0  |0-1|0  |0-1|   Failed-AVP          |0  |0+ |0  |0+ |0  |0+ |0  |0+ |0  |0+ |0  |0+ |   Firmware-Revision   |0-1|0-1|0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Host-IP-Address     |1+ |1+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Inband-Security-Id  |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Multi-Round-Time-Out|0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Origin-Host         |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |   Origin-Realm        |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |   Origin-State-Id     |0-1|0-1|0  |0  |0-1|0-1|0-1|0-1|0-1|0-1|0-1|0-1|   Product-Name        |1  |1  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Proxy-Info          |0  |0  |0  |0  |0  |0  |0+ |0+ |0+ |0+ |0+ |0+ |   Redirect-Host       |0  |0  |0  |0  |0  |0  |0  |0+ |0  |0+ |0  |0+ |   Redirect-Host-Usage |0  |0  |0  |0  |0  |0  |0  |0-1|0  |0-1|0  |0-1|   Redirect-Max-Cache- |0  |0  |0  |0  |0  |0  |0  |0-1|0  |0-1|0  |0-1|     Time              |   |   |   |   |   |   |   |   |   |   |   |   |   Result-Code         |0  |1  |0  |1  |0  |1  |0  |1  |0  |0  |0  |1  |   Re-Auth-Request-Type|0  |0  |0  |0  |0  |0  |1  |0  |0  |0  |0  |0  |   Route-Record        |0  |0  |0  |0  |0  |0  |0+ |0  |0+ |0  |0+ |0  |   Session-Binding     |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Session-Id          |0  |0  |0  |0  |0  |0  |1  |1  |1  |1  |1  |1  |   Session-Server-     |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |     Failover          |   |   |   |   |   |   |   |   |   |   |   |   |   Session-Timeout     |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Supported-Vendor-Id |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |   Termination-Cause   |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |1  |0  |   User-Name           |0  |0  |0  |0  |0  |0  |0-1|0-1|0-1|0-1|0-1|0-1|   Vendor-Id           |1  |1  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |Calhoun, et al.             Standards Track                   [Page 125]

RFC 3588                Diameter Based Protocol           September 2003   Vendor-Specific-    |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |     Application-Id    |   |   |   |   |   |   |   |   |   |   |   |   |   --------------------+---+---+---+---+---+---+---+---+---+---+---+---+10.2.  Accounting AVP Table   The table in this section is used to represent which AVPs defined in   this document are to be present in the Accounting messages.  These   AVP occurrence requirements are guidelines, which may be expanded,   and/or overridden by application-specific requirements in the   Diameter applications documents.                                 +-----------+                                 |  Command  |                                 |    Code   |                                 +-----+-----+   Attribute Name                | ACR | ACA |   ------------------------------+-----+-----+   Acct-Interim-Interval         | 0-1 | 0-1 |   Acct-Multi-Session-Id         | 0-1 | 0-1 |   Accounting-Record-Number      | 1   | 1   |   Accounting-Record-Type        | 1   | 1   |   Acct-Session-Id               | 0-1 | 0-1 |   Accounting-Sub-Session-Id     | 0-1 | 0-1 |   Accounting-Realtime-Required  | 0-1 | 0-1 |   Acct-Application-Id           | 0-1 | 0-1 |   Auth-Application-Id           | 0   | 0   |   Class                         | 0+  | 0+  |   Destination-Host              | 0-1 | 0   |   Destination-Realm             | 1   | 0   |   Error-Reporting-Host          | 0   | 0+  |   Event-Timestamp               | 0-1 | 0-1 |   Origin-Host                   | 1   | 1   |   Origin-Realm                  | 1   | 1   |   Proxy-Info                    | 0+  | 0+  |   Route-Record                  | 0+  | 0+  |   Result-Code                   | 0   | 1   |   Session-Id                    | 1   | 1   |   Termination-Cause             | 0-1 | 0-1 |   User-Name                     | 0-1 | 0-1 |   Vendor-Specific-Application-Id| 0-1 | 0-1 |   ------------------------------+-----+-----+Calhoun, et al.             Standards Track                   [Page 126]

RFC 3588                Diameter Based Protocol           September 200311.  IANA Considerations   This section provides guidance to the Internet Assigned Numbers   Authority (IANA) regarding registration of values related to the   Diameter protocol, in accordance withBCP 26 [IANA].  The following   policies are used here with the meanings defined inBCP 26: "Private   Use", "First Come First Served", "Expert Review", "Specification   Required", "IETF Consensus", "Standards Action".   This section explains the criteria to be used by the IANA for   assignment of numbers within namespaces defined within this document.   Diameter is not intended as a general purpose protocol, and   allocations SHOULD NOT be made for purposes unrelated to   authentication, authorization or accounting.   For registration requests where a Designated Expert should be   consulted, the responsible IESG area director should appoint the   Designated Expert.  For Designated Expert with Specification   Required, the request is posted to the AAA WG mailing list (or, if it   has been disbanded, a successor designated by the Area Director) for   comment and review, and MUST include a pointer to a public   specification. Before a period of 30 days has passed, the Designated   Expert will either approve or deny the registration request and   publish a notice of the decision to the AAA WG mailing list or its   successor.  A denial notice must be justified by an explanation and,   in the cases  where it is possible, concrete suggestions on how the   request can be modified so as to become acceptable.11.1.  AVP Header   As defined inSection 4, the AVP header contains three fields that   requires IANA namespace management; the AVP Code, Vendor-ID and Flags   field.11.1.1.  AVP Codes   The AVP Code namespace is used to identify attributes.  There are   multiple namespaces.  Vendors can have their own AVP Codes namespace   which will be identified by their Vendor-ID (also known as   Enterprise-Number) and they control the assignments of their vendor-   specific AVP codes within their own namespace.  The absence of a   Vendor-ID or a Vendor-ID value of zero (0) identifies the IETF IANA   controlled AVP Codes namespace.  The AVP Codes and sometimes also   possible values in an AVP are controlled and maintained by IANA.Calhoun, et al.             Standards Track                   [Page 127]

RFC 3588                Diameter Based Protocol           September 2003   AVP Code 0 is not used. AVP Codes 1-255 are managed separately as   RADIUS Attribute Types [RADTYPE].  This document defines the AVP   Codes 257-274, 276-285, 287, 291-300, 480, 483 and 485-486.  SeeSection 4.5 for the assignment of the namespace in this   specification.   AVPs may be allocated following Designated Expert with Specification   Required [IANA].  Release of blocks of AVPs (more than 3 at a time   for a given purpose) should require IETF Consensus.   Note that Diameter defines a mechanism for Vendor-Specific AVPs,   where the Vendor-Id field in the AVP header is set to a non-zero   value.  Vendor-Specific AVPs codes are for Private Use and should be   encouraged instead of allocation of global attribute types, for   functions specific only to one vendor's implementation of Diameter,   where no interoperability is deemed useful.  Where a Vendor-Specific   AVP is implemented by more than one vendor, allocation of global AVPs   should be encouraged instead.11.1.2.  AVP Flags   There are 8 bits in the AVP Flags field of the AVP header, defined inSection 4.  This document assigns bit 0 ('V'endor Specific), bit 1   ('M'andatory) and bit 2 ('P'rotected).  The remaining bits should   only be assigned via a Standards Action [IANA].11.2.  Diameter Header   As defined inSection 3, the Diameter header contains two fields that   require IANA namespace management; Command Code and Command Flags.11.2.1.  Command Codes   The Command Code namespace is used to identify Diameter commands.   The values 0-255 are reserved for RADIUS backward compatibility, and   are defined as "RADIUS Packet Type Codes" in [RADTYPE].  Values 256-   16,777,213 are for permanent, standard commands, allocated by IETF   Consensus [IANA].  This document defines the Command Codes 257, 258,   271, 274-275, 280 and 282.  SeeSection 3.1 for the assignment of the   namespace in this specification.   The values 16,777,214 and 16,777,215 (hexadecimal values 0xfffffe -   0xffffff) are reserved for experimental commands.  As these codes are   only for experimental and testing purposes, no guarantee is made for   interoperability between Diameter peers using experimental commands,   as outlined in [IANA-EXP].Calhoun, et al.             Standards Track                   [Page 128]

RFC 3588                Diameter Based Protocol           September 200311.2.2.  Command Flags   There are eight bits in the Command Flags field of the Diameter   header.  This document assigns bit 0 ('R'equest), bit 1 ('P'roxy),   bit 2 ('E'rror) and bit 3 ('T').  Bits 4 through 7 MUST only be   assigned via a Standards Action [IANA].11.3.  Application Identifiers   As defined inSection 2.4, the Application Identifier is used to   identify a specific Diameter Application.  There are standards-track   application ids and vendor specific application ids.   IANA [IANA] has assigned the range 0x00000001 to 0x00ffffff for   standards-track applications; and 0x01000000 - 0xfffffffe for vendor   specific applications, on a first-come, first-served basis.  The   following values are allocated.      Diameter Common Messages            0      NASREQ                              1 [NASREQ]      Mobile-IP                           2 [DIAMMIP]      Diameter Base Accounting            3      Relay                               0xffffffff   Assignment of standards-track application IDs are by Designated   Expert with Specification Required [IANA].   Both Application-Id and Acct-Application-Id AVPs use the same   Application Identifier space.   Vendor-Specific Application Identifiers, are for Private Use.   Vendor-Specific Application Identifiers are assigned on a First Come,   First Served basis by IANA.11.4.  AVP Values   Certain AVPs in Diameter define a list of values with various   meanings.  For attributes other than those specified in this section,   adding additional values to the list can be done on a First Come,   First Served basis by IANA.11.4.1.  Result-Code AVP Values   As defined inSection 7.1, the Result-Code AVP (AVP Code 268) defines   the values 1001, 2001-2002, 3001-3010, 4001-4002 and 5001-5017.   All remaining values are available for assignment via IETF Consensus   [IANA].Calhoun, et al.             Standards Track                   [Page 129]

RFC 3588                Diameter Based Protocol           September 200311.4.2.  Accounting-Record-Type AVP Values   As defined inSection 9.8.1, the Accounting-Record-Type AVP (AVP Code   480) defines the values 1-4.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.3.  Termination-Cause AVP Values   As defined inSection 8.15, the Termination-Cause AVP (AVP Code 295)   defines the values 1-8.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.4.  Redirect-Host-Usage AVP Values   As defined inSection 6.13, the Redirect-Host-Usage AVP (AVP Code   261) defines the values 0-5.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.5.  Session-Server-Failover AVP Values   As defined inSection 8.18, the Session-Server-Failover AVP (AVP Code   271) defines the values 0-3.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.6.  Session-Binding AVP Values   As defined inSection 8.17, the Session-Binding AVP (AVP Code 270)   defines the bits 1-4.  All remaining bits are available for   assignment via IETF Consensus [IANA].11.4.7.  Disconnect-Cause AVP Values   As defined inSection 5.4.3, the Disconnect-Cause AVP (AVP Code 273)   defines the values 0-2.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.8.  Auth-Request-Type AVP Values   As defined inSection 8.7, the Auth-Request-Type AVP (AVP Code 274)   defines the values 1-3.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.9.  Auth-Session-State AVP Values   As defined inSection 8.11, the Auth-Session-State AVP (AVP Code 277)   defines the values 0-1.  All remaining values are available for   assignment via IETF Consensus [IANA].Calhoun, et al.             Standards Track                   [Page 130]

RFC 3588                Diameter Based Protocol           September 200311.4.10.  Re-Auth-Request-Type AVP Values   As defined inSection 8.12, the Re-Auth-Request-Type AVP (AVP Code   285) defines the values 0-1.  All remaining values are available for   assignment via IETF Consensus [IANA].11.4.11.  Accounting-Realtime-Required AVP Values   As defined inSection 9.8.7, the Accounting-Realtime-Required AVP   (AVP Code 483) defines the values 1-3.  All remaining values are   available for assignment via IETF Consensus [IANA].11.4.12.   Inband-Security-Id AVP (code 299)   As defined inSection 6.10, the Inband-Security-Id AVP (AVP Code 299)   defines the values 0-1.  All remaining values are available for   assignment via IETF Consensus [IANA].11.5.  Diameter TCP/SCTP Port Numbers   The IANA has assigned TCP and SCTP port number 3868 to Diameter.11.6.  NAPTR Service Fields   The registration in the RFC MUST include the following information:   Service Field: The service field being registered.  An example for a   new fictitious transport protocol called NCTP might be "AAA+D2N".   Protocol: The specific transport protocol associated with that   service field.  This MUST include the name and acronym for the   protocol, along with reference to a document that describes the   transport protocol.  For example - "New Connectionless Transport   Protocol (NCTP),RFC 5766".   Name and Contact Information: The name, address, email address and   telephone number for the person performing the registration.   The following values have been placed into the registry:      Services Field               Protocol      AAA+D2T                       TCP      AAA+D2S                       SCTP12.  Diameter protocol related configurable parameters   This section contains the configurable parameters that are found   throughout this document:Calhoun, et al.             Standards Track                   [Page 131]

RFC 3588                Diameter Based Protocol           September 2003   Diameter Peer      A Diameter entity MAY communicate with peers that are statically      configured.  A statically configured Diameter peer would require      that either the IP address or the fully qualified domain name      (FQDN) be supplied, which would then be used to resolve through      DNS.   Realm Routing Table      A Diameter proxy server routes messages based on the realm portion      of a Network Access Identifier (NAI).  The server MUST have a      table of Realm Names, and the address of the peer to which the      message must be forwarded to.  The routing table MAY also include      a "default route", which is typically used for all messages that      cannot be locally processed.   Tc timer      The Tc timer controls the frequency that transport connection      attempts are done to a peer with whom no active transport      connection exists.  The recommended value is 30 seconds.13.  Security Considerations   The Diameter base protocol assumes that messages are secured by using   either IPSec or TLS.  This security mechanism is acceptable in   environments where there is no untrusted third party agent.  In other   situations, end-to-end security is needed.   Diameter clients, such as Network Access Servers (NASes) and Mobility   Agents MUST support IP Security [SECARCH] and MAY support TLS [TLS].   Diameter servers MUST support TLS and IPsec.  Diameter   implementations MUST use transmission-level security of some kind   (IPsec or TLS) on each connection.   If a Diameter connection is not protected by IPsec, then the CER/CEA   exchange MUST include an Inband-Security-ID AVP with a value of TLS.   For TLS usage, a TLS handshake will begin when both ends are in the   open state, after completion of the CER/CEA exchange.  If the TLS   handshake is successful, all further messages will be sent via TLS.   If the handshake fails, both ends move to the closed state.   It is suggested that IPsec be used primarily at the edges for intra-   domain exchanges.  For NAS devices without certificate support, pre-   shared keys can be used between the NAS and a local AAA proxy.   For protection of inter-domain exchanges, TLS is recommended.  See   Sections13.1 and13.2 for more details on IPsec and TLS usage.Calhoun, et al.             Standards Track                   [Page 132]

RFC 3588                Diameter Based Protocol           September 200313.1.  IPsec Usage   All Diameter implementations MUST support IPsec ESP [IPsec] in   transport mode with non-null encryption and authentication algorithms   to provide per-packet authentication, integrity protection and   confidentiality, and MUST support the replay protection mechanisms of   IPsec.   Diameter implementations MUST support IKE for peer authentication,   negotiation of security associations, and key management, using the   IPsec DOI [IPSECDOI].  Diameter implementations MUST support peer   authentication using a pre-shared key, and MAY support certificate-   based peer authentication using digital signatures.  Peer   authentication using the public key encryption methods outlined in   IKE's Sections5.2 and5.3 [IKE] SHOULD NOT be used.   Conformant implementations MUST support both IKE Main Mode and   Aggressive Mode.  When pre-shared keys are used for authentication,   IKE Aggressive Mode SHOULD be used, and IKE Main Mode SHOULD NOT be   used.  When digital signatures are used for authentication, either   IKE Main Mode or IKE Aggressive Mode MAY be used.   When digital signatures are used to achieve authentication, an IKE   negotiator SHOULD use IKE Certificate Request Payload(s) to specify   the certificate authority (or authorities) that are trusted in   accordance with its local policy.  IKE negotiators SHOULD use   pertinent certificate revocation checks before accepting a PKI   certificate for use in IKE's authentication procedures.   The Phase 2 Quick Mode exchanges used to negotiate protection for   Diameter connections MUST explicitly carry the Identity Payload   fields (IDci and IDcr).  The DOI provides for several types of   identification data.  However, when used in conformant   implementations, each ID Payload MUST carry a single IP address and a   single non-zero port number, and MUST NOT use the IP Subnet or IP   Address Range formats.  This allows the Phase 2 security association   to correspond to specific TCP and SCTP connections.   Since IPsec acceleration hardware may only be able to handle a   limited number of active IKE Phase 2 SAs, Phase 2 delete messages may   be sent for idle SAs, as a means of keeping the number of active   Phase 2 SAs to a minimum.  The receipt of an IKE Phase 2 delete   message SHOULD NOT be interpreted as a reason for tearing down a   Diameter connection.  Rather, it is preferable to leave the   connection up, and if additional traffic is sent on it, to bring up   another IKE Phase 2 SA to protect it.  This avoids the potential for   continually bringing connections up and down.Calhoun, et al.             Standards Track                   [Page 133]

RFC 3588                Diameter Based Protocol           September 200313.2.  TLS Usage   A Diameter node that initiates a connection to another Diameter node   acts as a TLS client according to [TLS], and a Diameter node that   accepts a connection acts as a TLS server.  Diameter nodes   implementing TLS for security MUST mutually authenticate as part of   TLS session establishment.  In order to ensure mutual authentication,   the Diameter node acting as TLS server must request a certificate   from the Diameter node acting as TLS client, and the Diameter node   acting as TLS client MUST be prepared to supply a certificate on   request.   Diameter nodes MUST be able to negotiate the following TLS cipher   suites:      TLS_RSA_WITH_RC4_128_MD5      TLS_RSA_WITH_RC4_128_SHA      TLS_RSA_WITH_3DES_EDE_CBC_SHA   Diameter nodes SHOULD be able to negotiate the following TLS cipher   suite:      TLS_RSA_WITH_AES_128_CBC_SHA   Diameter nodes MAY negotiate other TLS cipher suites.13.3.  Peer-to-Peer Considerations   As with any peer-to-peer protocol, proper configuration of the trust   model within a Diameter peer is essential to security.  When   certificates are used, it is necessary to configure the root   certificate authorities trusted by the Diameter peer.  These root CAs   are likely to be unique to Diameter usage and distinct from the root   CAs that might be trusted for other purposes such as Web browsing.   In general, it is expected that those root CAs will be configured so   as to reflect the business relationships between the organization   hosting the Diameter peer and other organizations.  As a result, a   Diameter peer will typically not be configured to allow connectivity   with any arbitrary peer.  When certificate authentication Diameter   peers may not be known beforehand, and therefore peer discovery may   be required.   Note that IPsec is considerably less flexible than TLS when it comes   to configuring root CAs.  Since use of Port identifiers is prohibited   within IKE Phase 1, within IPsec it is not possible to uniquely   configure trusted root CAs for each application individually; the   same policy must be used for all applications.  This implies, for   example, that a root CA trusted for use with Diameter must also beCalhoun, et al.             Standards Track                   [Page 134]

RFC 3588                Diameter Based Protocol           September 2003   trusted to protect SNMP.  These restrictions can be awkward at best.   Since TLS supports application-level granularity in certificate   policy, TLS SHOULD be used to protect Diameter connections between   administrative domains.  IPsec is most appropriate for intra-domain   usage when pre-shared keys are used as a security mechanism.   When pre-shared key authentication is used with IPsec to protect   Diameter, unique pre-shared keys are configured with Diameter peers,   who are identified by their IP address (Main Mode), or possibly their   FQDN (Aggressive Mode).  As a result, it is necessary for the set of   Diameter peers to be known beforehand.  Therefore, peer discovery is   typically not necessary.   The following is intended to provide some guidance on the issue.   It is recommended that a Diameter peer implement the same security   mechanism (IPsec or TLS) across all its peer-to-peer connections.   Inconsistent use of security mechanisms can result in redundant   security mechanisms being used (e.g., TLS over IPsec) or worse,   potential security vulnerabilities.  When IPsec is used with   Diameter, a typical security policy for outbound traffic is "Initiate   IPsec, from me to any, destination port Diameter"; for inbound   traffic, the policy would be "Require IPsec, from any to me,   destination port Diameter".   This policy causes IPsec to be used whenever a Diameter peer   initiates a connection to another Diameter peer, and to be required   whenever an inbound Diameter connection occurs.  This policy is   attractive, since it does not require policy to be set for each peer   or dynamically modified each time a new Diameter connection is   created; an IPsec SA is automatically created based on a simple   static policy.  Since IPsec extensions are typically not available to   the sockets API on most platforms, and IPsec policy functionality is   implementation dependent, use of a simple static policy is the often   the simplest route to IPsec-enabling a Diameter implementation.   One implication of the recommended policy is that if a node is using   both TLS and IPsec, there is not a convenient way in which to use   either TLS or IPsec, but not both, without reserving an additional   port for TLS usage.  Since Diameter uses the same port for TLS and   non-TLS usage, where the recommended IPsec policy is put in place, a   TLS-protected connection will match the IPsec policy, and both IPsec   and TLS will be used to protect the Diameter connection.  To avoid   this, it would be necessary to plumb peer-specific policies either   statically or dynamically.Calhoun, et al.             Standards Track                   [Page 135]

RFC 3588                Diameter Based Protocol           September 2003   If IPsec is used to secure Diameter peer-to-peer connections, IPsec   policy SHOULD be set so as to require IPsec protection for inbound   connections, and to initiate IPsec protection for outbound   connections.  This can be accomplished via use of inbound and   outbound filter policy.14.  References14.1.  Normative References   [AAATRANS]     Aboba, B. and J. Wood, "Authentication, Authorization                  and Accounting (AAA) Transport Profile",RFC 3539,                  June 2003.   [ABNF]         Crocker, D. and P. Overell, "Augmented BNF for Syntax                  Specifications: ABNF",RFC 2234, November 1997.   [ASSIGNNO]     Reynolds, J., "Assigned Numbers:RFC 1700 is Replaced                  by an On-line Database",RFC 3232, January 2002.   [DIFFSERV]     Nichols, K., Blake, S., Baker, F. and D. Black,                  "Definition of the Differentiated Services Field (DS                  Field) in the IPv4 and IPv6 Headers",RFC 2474,                  December 1998.   [DIFFSERVAF]   Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski,                  "Assured Forwarding PHB Group",RFC 2597, June 1999.   [DIFFSERVEF]   Davie, B., Charny, A., Bennet, J., Benson, K., Le                  Boudec, J., Courtney, W., Davari, S., Firoiu, V. and                  D. Stiliadis, "An Expedited Forwarding PHB",RFC 3246,                  March 2002.   [DNSSRV]       Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR                  for specifying the location of services (DNS SRV)",RFC 2782, February 2000.   [EAP]          Blunk, L. and J. Vollbrecht, "PPP Extensible                  Authentication Protocol (EAP)",RFC 2284, March 1998.   [FLOATPOINT]   Institute of Electrical and Electronics Engineers,                  "IEEE Standard for Binary Floating-Point Arithmetic",                  ANSI/IEEE Standard 754-1985, August 1985.   [IANA]         Narten, T. and H. Alvestrand, "Guidelines for Writing                  an IANA Considerations Section in RFCs",BCP 26,RFC2434, October 1998.Calhoun, et al.             Standards Track                   [Page 136]

RFC 3588                Diameter Based Protocol           September 2003   [IANAADFAM]    IANA; "Address Family Numbers",http://www.iana.org/assignments/address-family-numbers   [IANAWEB]      IANA, "Number assignment",http://www.iana.org   [IKE]          Harkins, D. and D. Carrel, "The Internet Key Exchange                  (IKE)",RFC 2409, November 1998.   [IPComp]       Shacham, A., Monsour, R., Pereira, R. and M. Thomas,                  "IP Payload Compression Protocol (IPComp)",RFC 3173,                  September 2001.   [IPSECDOI]     Piper, D., "The Internet IP Security Domain of                  Interpretation for ISAKMP",RFC 2407, November 1998.   [IPV4]         Postel, J., "Internet Protocol", STD 5,RFC 791,                  September 1981.   [IPV6]         Hinden, R. and S. Deering, "IP Version 6 Addressing                  Architecture",RFC 2373, July 1998.   [KEYWORDS]     Bradner, S., "Key words for use in RFCs to Indicate                  Requirement Levels",BCP 14,RFC 2119, March 1997.   [NAI]          Aboba, B. and M. Beadles, "The Network Access                  Identifier",RFC 2486, January 1999.   [NAPTR]        Mealling, M. and R. Daniel, "The naming authority                  pointer (NAPTR) DNS resource record,"RFC 2915,                  September 2000.   [RADTYPE]      IANA, "RADIUS Types",http://www.iana.org/assignments/radius-types   [SCTP]         Stewart, R., Xie, Q., Morneault, K., Sharp, C.,                  Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,                  Zhang, L. and V. Paxson, "Stream Control Transmission                  Protocol",RFC 2960, October 2000.   [SLP]          Veizades, J., Guttman, E., Perkins, C. and M. Day,                  "Service Location Protocol, Version 2",RFC 2165, June                  1999.   [SNTP]         Mills, D., "Simple Network Time Protocol (SNTP)                  Version 4 for IPv4, IPv6 and OSI",RFC 2030, October                  1996.Calhoun, et al.             Standards Track                   [Page 137]

RFC 3588                Diameter Based Protocol           September 2003   [TCP]          Postel, J. "Transmission Control Protocol", STD 7,RFC793, January 1981.   [TEMPLATE]     Guttman, E., Perkins, C. and J. Kempf, "Service                  Templates and Service: Schemes",RFC 2609, June 1999.   [TLS]          Dierks, T. and C. Allen, "The TLS Protocol Version                  1.0",RFC 2246, January 1999.   [TLSSCTP]      Jungmaier, A., Rescorla, E. and M. Tuexen, "Transport                  Layer Security over Stream Control Transmission                  Protocol",RFC 3436, December 2002.   [URI]          Berners-Lee, T., Fielding, R. and L. Masinter,                  "Uniform Resource Identifiers (URI): Generic Syntax",RFC 2396, August 1998.   [UTF8]         Yergeau, F., "UTF-8, a transformation format of ISO                  10646",RFC 2279, January 1998.14.2.  Informative References   [AAACMS]       P. Calhoun, W. Bulley, S. Farrell, "Diameter CMS                  Security Application", Work in Progress.   [AAAREQ]       Aboba, B., Calhoun, P., Glass, S., Hiller, T., McCann,                  P., Shiino, H., Zorn, G., Dommety, G., Perkins, C.,                  Patil, B., Mitton, D., Manning, S., Beadles, M.,                  Walsh, P., Chen, X., Sivalingham, S., Hameed, A.,                  Munson, M., Jacobs, S., Lim, B., Hirschman, B., Hsu,                  R., Xu, Y., Campbell, E., Baba, S. and E. Jaques,                  "Criteria for Evaluating AAA Protocols for Network                  Access",RFC 2989, November 2000.   [ACCMGMT]      Aboba, B., Arkko, J. and D. Harrington. "Introduction                  to Accounting Management",RFC 2975, October 2000.   [CDMA2000]     Hiller, T., Walsh, P., Chen, X., Munson, M., Dommety,                  G., Sivalingham, S., Lim, B., McCann, P., Shiino, H.,                  Hirschman, B., Manning, S., Hsu, R., Koo, H., Lipford,                  M., Calhoun, P., Lo, C., Jaques, E., Campbell, E., Xu,                  Y., Baba, S., Ayaki, T., Seki, T. and A.  Hameed,                  "CDMA2000 Wireless Data Requirements for AAA",RFC3141, June 2001.   [DIAMMIP]      P. Calhoun, C. Perkins, "Diameter Mobile IP                  Application", Work in Progress.Calhoun, et al.             Standards Track                   [Page 138]

RFC 3588                Diameter Based Protocol           September 2003   [DYNAUTH]      Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B.                  Aboba, "Dynamic Authorization Extensions to Remote                  Authentication Dial In User Service (RADIUS)",RFC3576, July 2003.   [IANA-EXP]     T. Narten, "Assigning Experimental and Testing Numbers                  Considered Useful", Work in Progress.   [MIPV4]        Perkins, C., "IP Mobility Support for IPv4",RFC 3344,                  August 2002.   [MIPREQ]       Glass, S., Hiller, T., Jacobs, S. and C. Perkins,                  "Mobile IP Authentication, Authorization, and                  Accounting Requirements",RFC 2977, October 2000.   [NASNG]        Mitton, D. and M. Beadles, "Network Access Server                  Requirements Next Generation (NASREQNG) NAS Model",RFC 2881, July 2000.   [NASREQ]       P. Calhoun, W. Bulley, A. Rubens, J. Haag, "Diameter                  NASREQ Application", Work in Progress.   [NASCRIT]      Beadles, M. and D. Mitton, "Criteria for Evaluating                  Network Access Server Protocols",RFC 3169, September                  2001.   [PPP]          Simpson, W., "The Point-to-Point Protocol (PPP)", STD                  51,RFC 1661, July 1994.   [PROXYCHAIN]   Aboba, B. and J. Vollbrecht, "Proxy Chaining and                  Policy Implementation in Roaming",RFC 2607, June                  1999.   [RADACCT]      Rigney, C., "RADIUS Accounting",RFC 2866, June 2000.   [RADEXT]       Rigney, C., Willats, W. and P. Calhoun, "RADIUS                  Extensions",RFC 2869, June 2000.   [RADIUS]       Rigney, C., Willens, S., Rubens, A. and W. Simpson,                  "Remote Authentication Dial In User Service (RADIUS)",RFC 2865, June 2000.   [ROAMREV]      Aboba, B., Lu, J., Alsop, J., Ding, J. and W. Wang,                  "Review of Roaming Implementations",RFC 2194,                  September 1997.   [ROAMCRIT]     Aboba, B. and G. Zorn, "Criteria for Evaluating                  Roaming Protocols",RFC 2477, January 1999.Calhoun, et al.             Standards Track                   [Page 139]

RFC 3588                Diameter Based Protocol           September 2003   [SECARCH]      Kent, S. and R. Atkinson, "Security Architecture for                  the Internet Protocol",RFC 2401, November 1998.   [TACACS]       Finseth, C., "An Access Control Protocol, Sometimes                  Called TACACS",RFC 1492, July 1993.15.  Acknowledgements   The authors would like to thank Nenad Trifunovic, Tony Johansson and   Pankaj Patel for their participation in the pre-IETF Document Reading   Party.  Allison Mankin, Jonathan Wood and Bernard Aboba provided   invaluable assistance in working out transport issues, and similarly   with Steven Bellovin in the security area.   Paul Funk and David Mitton were instrumental in getting the Peer   State Machine correct, and our deep thanks go to them for their time.   Text in this document was also provided by Paul Funk, Mark Eklund,   Mark Jones and Dave Spence.  Jacques Caron provided many great   comments as a result of a thorough review of the spec.   The authors would also like to acknowledge the following people for   their contribution in the development of the Diameter protocol:   Allan C. Rubens, Haseeb Akhtar, William Bulley, Stephen Farrell,   David Frascone, Daniel C. Fox, Lol Grant, Ignacio Goyret, Nancy   Greene, Peter Heitman, Fredrik Johansson, Mark Jones, Martin Julien,   Bob Kopacz, Paul Krumviede, Fergal Ladley, Ryan Moats, Victor Muslin,   Kenneth Peirce, John Schnizlein, Sumit Vakil, John R. Vollbrecht and   Jeff Weisberg.   Finally, Pat Calhoun would like to thank Sun Microsystems since most   of the effort put into this document was done while he was in their   employ.Calhoun, et al.             Standards Track                   [Page 140]

RFC 3588                Diameter Based Protocol           September 2003Appendix A.  Diameter Service Template   The following service template describes the attributes used by   Diameter servers to advertise themselves.  This simplifies the   process of selecting an appropriate server to communicate with.  A   Diameter client can request specific Diameter servers based on   characteristics of the Diameter service desired (for example, an AAA   server to use for accounting.)   Name of submitter:  "Erik Guttman" <Erik.Guttman@sun.com> Language of   service template:  en   Security Considerations:      Diameter clients and servers use various cryptographic mechanisms      to protect communication integrity, confidentiality as well as      perform end-point authentication.  It would thus be difficult if      not impossible for an attacker to advertise itself using SLPv2 and      pose as a legitimate Diameter peer without proper preconfigured      secrets or cryptographic keys.  Still, as Diameter services are      vital for network operation it is important to use SLPv2      authentication to prevent an attacker from modifying or      eliminating service advertisements for legitimate Diameter      servers.   Template text:   -------------------------template begins here-----------------------   template-type=service:diameter   template-version=0.0   template-description=     The Diameter protocol is defined byRFC 3588.   template-url-syntax=     url-path= ; The Diameter URL format is described inSection 2.9.               ; Example: 'aaa://aaa.example.com:1812;transport=tcp      supported-auth-applications= string L M      # This attribute lists the Diameter applications supported by the      # AAA implementation.  The applications currently defined are:      #  Application Name     Defined by      #  ----------------     -----------------------------------      #  NASREQ               Diameter Network Access Server Application      #  MobileIP             Diameter Mobile IP Application      #      # Notes:      #   . Diameter implementations support one or more applications.      #   . Additional applications may be defined in the future.      #     An updated service template will be created at that time.Calhoun, et al.             Standards Track                   [Page 141]

RFC 3588                Diameter Based Protocol           September 2003      #      NASREQ,MobileIP      supported-acct-applications= string L M      # This attribute lists the Diameter applications supported by the      # AAA implementation.  The applications currently defined are:      #  Application Name     Defined by      #  ----------------     -----------------------------------      #  NASREQ               Diameter Network Access Server Application      #  MobileIP             Diameter Mobile IP Application      #      # Notes:      #   . Diameter implementations support one or more applications.      #   . Additional applications may be defined in the future.      #     An updated service template will be created at that time.      #      NASREQ,MobileIP      supported-transports= string L M      SCTP      # This attribute lists the supported transports that the Diameter      # implementation accepts.  Note that a compliant Diameter      # implementation MUST support SCTP, though it MAY support other      # transports, too.      SCTP,TCP   -------------------------template ends here-----------------------Appendix B.  NAPTR Example   As an example, consider a client that wishes to resolve aaa:ex.com.   The client performs a NAPTR query for that domain, and the following   NAPTR records are returned:   ;;          order pref flags service           regexp  replacement      IN NAPTR 50   50  "s"  "AAA+D2S"           ""      _diameter._sctp.example.com IN NAPTR 100  50  "s"  "AAA+D2T"      ""  _aaa._tcp.example.com   This indicates that the server supports SCTP, and TCP, in that order.   If the client supports over SCTP, SCTP will be used, targeted to a   host determined by an SRV lookup of _diameter._sctp.ex.com. That   lookup would return:   ;;          Priority Weight Port   Target      IN SRV  0        1      5060   server1.example.com IN SRV  0      2      5060   server2.example.comCalhoun, et al.             Standards Track                   [Page 142]

RFC 3588                Diameter Based Protocol           September 2003Appendix C.  Duplicate Detection   As described inSection 9.4, accounting record duplicate detection is   based on session identifiers.  Duplicates can appear for various   reasons:   -  Failover to an alternate server.  Where close to real-time      performance is required, failover thresholds need to be kept low      and this may lead to an increased likelihood of duplicates.      Failover can occur at the client or within Diameter agents.   -  Failure of a client or agent after sending of a record from non-      volatile memory, but prior to receipt of an application layer ACK      and deletion of the record. record to be sent.  This will result      in retransmission of the record soon after the client or agent has      rebooted.   -  Duplicates received from RADIUS gateways.  Since the      retransmission behavior of RADIUS is not defined within [RFC2865],      the likelihood of duplication will vary according to the      implementation.   -  Implementation problems and misconfiguration.   The T flag is used as an indication of an application layer   retransmission event, e.g., due to failover to an alternate server.   It is defined only for request messages sent by Diameter clients or   agents.  For instance, after a reboot, a client may not know whether   it has already tried to send the accounting records in its non-   volatile memory before the reboot occurred.  Diameter servers MAY use   the T flag as an aid when processing requests and detecting duplicate   messages.  However, servers that do this MUST ensure that duplicates   are found even when the first transmitted request arrives at the   server after the retransmitted request.  It can be used only in cases   where no answer has been received from the Server for a request and   the request is sent again, (e.g., due to a failover to an alternate   peer, due to a recovered primary peer or due to a client re-sending a   stored record from non-volatile memory such as after reboot of a   client or agent).   In some cases the Diameter accounting server can delay the duplicate   detection and accounting record processing until a post-processing   phase takes place.  At that time records are likely to be sorted   according to the included User-Name and duplicate elimination is easy   in this case.  In other situations it may be necessary to perform   real-time duplicate detection, such as when credit limits are imposed   or real-time fraud detection is desired.Calhoun, et al.             Standards Track                   [Page 143]

RFC 3588                Diameter Based Protocol           September 2003   In general, only generation of duplicates due to failover or re-   sending of records in non-volatile storage can be reliably detected   by Diameter clients or agents.  In such cases the Diameter client or   agents can mark the message as possible duplicate by setting the T   flag.  Since the Diameter server is responsible for duplicate   detection, it can choose to make use of the T flag or not, in order   to optimize duplicate detection.  Since the T flag does not affect   interoperability, and may not be needed by some servers, generation   of the T flag is REQUIRED for Diameter clients and agents, but MAY be   implemented by Diameter servers.   As an example, it can be usually be assumed that duplicates appear   within a time window of longest recorded network partition or device   fault, perhaps a day.  So only records within this time window need   to be looked at in the backward direction.  Secondly, hashing   techniques or other schemes, such as the use of the T flag in the   received messages, may be used to eliminate the need to do a full   search even in this set except for rare cases.   The following is an example of how the T flag may be used by the   server to detect duplicate requests.      A Diameter server MAY check the T flag of the received message to      determine if the record is a possible duplicate.  If the T flag is      set in the request message, the server searches for a duplicate      within a configurable duplication time window backward and      forward.  This limits database searching to those records where      the T flag is set.  In a well run network, network partitions and      device faults will presumably be rare events, so this approach      represents a substantial optimization of the duplicate detection      process.  During failover, it is possible for the original record      to be received after the T flag marked record, due to differences      in network delays experienced along the path by the original and      duplicate transmissions.  The likelihood of this occurring      increases as the failover interval is decreased.  In order to be      able to detect out of order duplicates, the Diameter server should      use backward and forward time windows when performing duplicate      checking for the T flag marked request.  For example, in order to      allow time for the original record to exit the network and be      recorded by the accounting server, the Diameter server can delay      processing records with the T flag set until a time period      TIME_WAIT + RECORD_PROCESSING_TIME has elapsed after the closing      of the original transport connection.  After this time period has      expired, then it may check the T flag marked records against the      database with relative assurance that the original records, if      sent, have been received and recorded.Calhoun, et al.             Standards Track                   [Page 144]

RFC 3588                Diameter Based Protocol           September 2003Appendix D.  Intellectual Property Statement   The IETF takes no position regarding the validity or scope of any   intellectual property or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; neither does it represent that it   has made any effort to identify any such rights.  Information on the   IETF's procedures with respect to rights in standards-track and   standards-related documentation can be found inBCP-11.  Copies of   claims of rights made available for publication and any assurances of   licenses to be made available, or the result of an attempt made to   obtain a general license or permission for the use of such   proprietary rights by implementers or users of this specification can   be obtained from the IETF Secretariat.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights which may cover technology that may be required to practice   this standard.  Please address the information to the IETF Executive   Director.Calhoun, et al.             Standards Track                   [Page 145]

RFC 3588                Diameter Based Protocol           September 2003Authors' Addresses   Pat R. Calhoun   Airespace, Inc.   110 Nortech Parkway   San Jose, California, 95134   USA   Phone:  +1 408-635-2023   Fax:  +1 408-635-2020   EMail:  pcalhoun@airespace.com   John Loughney   Nokia Research Center   Itamerenkatu 11-13   00180 Helsinki   Finland   Phone:  +358 50 483 6242   EMail:  john.Loughney@nokia.com   Jari Arkko   Ericsson   02420 Jorvas   Finland   Phone: +358 40 5079256   EMail: Jari.Arkko@ericsson.com   Erik Guttman   Sun Microsystems, Inc.   Eichhoelzelstr. 7   74915 Waibstadt   Germany   Phone:  +49 7263 911 701   EMail:  erik.guttman@sun.com   Glen Zorn   Cisco Systems, Inc.   500 108th Avenue N.E., Suite 500   Bellevue, WA 98004   USA   Phone:  +1 425 438 8218Calhoun, et al.             Standards Track                   [Page 146]

RFC 3588                Diameter Based Protocol           September 2003Full Copyright Statement   Copyright (C) The Internet Society (2003).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Calhoun, et al.             Standards Track                   [Page 147]

[8]ページ先頭

©2009-2025 Movatter.jp