Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                         R. RaszukRequest for Comments: 6769                                       NTT MCLCategory: Informational                                         J. HeitzISSN: 2070-1721                                                 Ericsson                                                                   A. Lo                                                                  Arista                                                                L. Zhang                                                                    UCLA                                                                   X. Xu                                                                  Huawei                                                            October 2012Simple Virtual Aggregation (S-VA)Abstract   All BGP routers in the Default-Free Zone (DFZ) are required to carry   all routes in the Default-Free Routing Table (DFRT).  This document   describes a technique, Simple Virtual Aggregation (S-VA), that allows   some BGP routers not to install all of those routes into the   Forwarding Information Base (FIB).   Some routers in an Autonomous System (AS) announce an aggregate (the   VA prefix) in addition to the routes they already announce.  This   enables other routers not to install the routes covered by the VA   prefix into the FIB as long as those routes have the same next-hop as   the VA prefix.   The VA prefixes that are announced within an AS are not announced to   any other AS.  The described functionality is of very low operational   complexity, as it proposes a confined BGP speaker solution without   any dependency on network-wide configuration or requirement for any   form of intra-domain tunneling.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.Raszuk, et al.                Informational                     [Page 1]

RFC 6769                          S-VA                      October 2012   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc6769.Copyright Notice   Copyright (c) 2012 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1. Introduction ....................................................31.1. Scope of This Document .....................................31.2. Requirements Notation ......................................31.3. Terminology ................................................32. Operation of S-VA ...............................................43. Deployment Considerations .......................................64. Security Considerations .........................................75. Acknowledgements ................................................76. Normative References ............................................77. Informative References ..........................................7Raszuk, et al.                Informational                     [Page 2]

RFC 6769                          S-VA                      October 20121.  Introduction   This document describes a technique called Simple Virtual Aggregation   (S-VA).  It allows some routers not to store some routes in the   Forwarding Information Base (FIB) while still advertising and   receiving the full Default-Free Routing Table (DFRT) in BGP.   A typical scenario is as follows.  Core routers in the ISP maintain   the full DFRT in the FIB and Routing Information Base (RIB).  Edge   routers maintain the full DFRT in the BGP Local RIB (Loc-RIB), but do   not install certain routes in the RIB and FIB.  Edge routers may   install a default route to core routers, to Area Border Routers (ABR)   that are installed on the Point of Presence (POP), to core boundary   routers, or to Autonomous System Border Routers (ASBRs).   S-VA must be enabled on an edge router that needs to save its RIB and   FIB space.  The core routers must announce a new prefix called   Virtual Aggregate (VA prefix).1.1.  Scope of This Document   The VA prefix is not intended to be announced from one AS into   another, only between routers of the same AS.   S-VA can be used for both IPv4 unicast and multicast address families   and IPv6 unicast and multicast address families.   S-VA does not need to operate on every router in an AS.1.2.  Requirements Notation   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].1.3.  Terminology   RIB/FIB-Installing Router (FIR):  A router that does not suppress any      routes and announces the VA prefix.  Typically, a core router, a      POP to core boundary router, or an ASBR would be configured as an      FIR.   RIB/FIB-Suppressing Router (FSR):  An S-VA router that installs the      VA prefix, but does not install routes that are covered by and      have the same next-hop as the VA prefix into its FIB.  Typically,      an edge router would be configured as an FSR.Raszuk, et al.                Informational                     [Page 3]

RFC 6769                          S-VA                      October 2012   Suppress:  Not to install a route that is covered by the VA prefix      into the global RIB or FIB.   Legacy Router:  A router that does not run S-VA and has no knowledge      of S-VA.   Global Routing Information Base (RIB):  All routing protocols in a      router install their selected routes into the RIB.  The routes in      the RIB are used to resolve next-hops for other routes, to be      redistributed to other routing protocols, and to be installed into      the FIB.   Local/Protocol Routing Information Base (Loc-RIB):  The Loc-RIB      contains the routes that have been selected by the local BGP      speaker's Decision Process as in [RFC4271].   NLRI:  Network Layer Reachability Information [RFC4271]2.  Operation of S-VA   There are three types of routers in S-VA: FIB-Installing routers   (FIR), FIB-Suppressing routers (FSR), and, optionally, legacy   routers.  While any router can be an FIR or an FSR, the simplest form   of deployment is for AS border routers to be configured as FIRs and   for customer facing edge routers to be configured as FSRs.   When a FIR announces a VA prefix, it sets the path attributes as   follows.  The ORIGIN MUST be set to INCOMPLETE (value 2).  The   NEXT_HOP MUST be set to the same value as that of the routes that are   intended to be covered by the VA prefix.  The ATOMIC_AGGREGATE and   AGGREGATOR attributes SHOULD NOT be included.  The FIR MUST attach a   NO_EXPORT community attribute [RFC1997].  The NLRI SHOULD be 0/0.   A FIR SHOULD NOT FIB-suppress any routes.   An FSR must detect the VA prefix or prefixes (including 0/0) and   install them in all of Loc-RIB, RIB, and FIB.  The FSR MAY suppress   any more-specific routes that carry the same next-hop as the VA   prefix.   Generally, any more-specific route that carries the same next-hop as   the VA prefix is eligible for suppression.  However, provided that   there is at least one less-specific prefix with a different next-hop   between the VA prefix and the suppressed prefixes, then those   suppressed prefixes must be reinstalled.   An example with three prefixes can be considered where the VA-prefix   (prefix 1) is the least specific and covers prefix 2 and prefix 3.Raszuk, et al.                Informational                     [Page 4]

RFC 6769                          S-VA                      October 2012   Prefix 2 is less specific than prefix 3 and covers the latter.  If   all three have the same next-hop, then only the bigger one, i.e.,   VA-Prefix, is announced.  However, if prefix 2 has a different   next-hop, then it will need to be announced separately.  In this   case, it is important to also announce prefix 3 separately.   Similarly, when Internal BGP (IBGP) multipath is enabled, and when   multiple VA prefixes form a multipath, only those more-specific   prefixes of which the set of next-hops are identical to the set of   next-hops of the VA prefix multipath are subject to suppression.   The expected behavior is illustrated in Figure 1.  This figure shows   an AS with a FIR, FIR1, and an FSR, FSR1.  FSR1 is an ASBR and is   connected to two external ASBRs, EP1 and EP2.        +------------------------------------------+        |      Autonomous System                   |   +----+        |                                          |   |EP1 |        |                                      /---+---|    |        |   To   ----\ +----+          +----+ /    |   +----+        | Other       \|FIR1|----------|FSR1|/     |        |Routers      /|    |          |    |\     |        |        ----/ +----+          +----+ \    |   +----+        |                                      \---+---|EP2 |        |                                          |   |    |        |                                          |   +----+        +------------------------------------------+                            Figure 1   Suppose that FSR1 has been enabled to perform S-VA.  Originally, it   receives all routes from FIR1 (doing next-hop-self) as well as from   EP1 and EP2.  FIR1 now will advertise a VA prefix 0/0 with the next-   hop set to itself.  This will cause FSR1 to suppress all routes with   the same next-hop as the VA prefix.  However, FSR1 will not suppress   any routes received from EP1 and EP2, because their next-hops are   different from that of the VA prefix.   Several FIRs may announce different S-VA prefixes.  For example, in a   POP, each edge router can announce into the POP an S-VA prefix that   covers the addresses of the customers it services.   Several FIRs may announce the same S-VA prefix.  In this case, an FSR   must choose to install only one of them.  For example, two redundant   ASBRs, both of which announce the complete DFRT, may each also   announce the default route as an S-VA prefix into the AS.Raszuk, et al.                Informational                     [Page 5]

RFC 6769                          S-VA                      October 2012   S-VA may be used to split traffic among redundant exit routers.  For   example, suppose in Figure 1 that EP1 and EP2 are two redundant ASBRs   that announce the complete DFRT.  Each may also announce two S-VA   prefixes into the AS: 0/1 and 128/1.  EP1 might announce 0/1 with   higher preference and EP2 might announce 128/1 with higher   preference.  FIR1 will now install into its FIB 0/1 pointing to EP1   and 128/1 pointing to EP2.  If either EP1 or EP2 were to fail, then   FSR1 would switch the traffic to the other exit router with a single   FIB installation of one S-VA prefix.3.  Deployment Considerations   BGP routes may be used to resolve next-hops for static routes or   other BGP routes.  Because the default route does not imply   reachability of any destination, a router can be configured to not   resolve next-hops using the default route.  In this case, S-VA should   not suppress a route that may be used to resolve a next-hop for   another route from installation into the RIB.  It may still suppress   it from installation into the FIB.   Selected BGP routes in the RIB may be redistributed to other   protocols.  If they no longer exist in the RIB, they will not be   redistributed.  This is especially important when the conditional   redistribution is taking place based on the length of the prefix,   community value, etc.  In those cases where a redistribution policy   is in place, S-VA implementation should refrain from suppressing   installation into the RIB routes matching such policy.  It may still   suppress them from installation into the FIB.   A router may originate a network route or an aggregate route into   BGP.  Some addresses covered by such a route may not exist.  If this   router were to receive a packet for an unreachable address within an   originated route, it must not send that packet to the VA prefix   route.  There are several ways to achieve this.  One way is to have   the FIR aggregate the routes instead of the FSR.  Another way is to   install a black hole route for the nonexistent addresses on the   originating router.  This issue is not specific to S-VA, but   applicable to the general use of default routes.   Like any aggregate, an S-VA prefix may include more address space   than the sum of the prefixes it covers.  As such, the S-VA prefix may   provide a route for a packet for which no real destination exists.   An FSR will forward such a packet to the FIR.   If an S-VA prefix changes its next-hop or is removed, then many   routes may need to be downloaded into the FIB to achieve convergence.Raszuk, et al.                Informational                     [Page 6]

RFC 6769                          S-VA                      October 20124.  Security Considerations   The authors are not aware of any new security considerations due to   S-VA.  The local nature of the proposed optimization eliminates any   external exposure of the functionality.  The presence of more   specifics that are used as VA prefixes is also a normal BGP behavior   in current networks.5.  Acknowledgements   The concept for Virtual Aggregation comes from Paul Francis.  In this   document, the authors only simplified some aspects of its behavior to   allow simpler adoption by some operators.   The authors would like to thank Clarence Filsfils, Nick Hilliard, S.   Moonesamy, and Tom Petch for their review and valuable input.6.  Normative References   [RFC1997]  Chandra, R., Traina, P., and T. Li, "BGP Communities              Attribute",RFC 1997, August 1996.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC5082]  Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.              Pignataro, "The Generalized TTL Security Mechanism              (GTSM)",RFC 5082, October 2007.7.  Informative References   [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A              Border Gateway Protocol 4 (BGP-4)",RFC 4271, January              2006.Raszuk, et al.                Informational                     [Page 7]

RFC 6769                          S-VA                      October 2012Authors' Addresses   Robert Raszuk   NTT MCL   101 S Ellsworth Avenue Suite 350   San Mateo, CA 94401   USA   EMail: robert@raszuk.net   Jakob Heitz   Ericsson   300 Holger Way   San Jose, CA 95134   USA   EMail: jakob.heitz@ericsson.com   Alton Lo   Arista Networks   5470 Great America Parkway   Santa Clara, CA 95054   USA   EMail: altonlo@aristanetworks.com   Lixia Zhang   UCLA   3713 Boelter Hall   Los Angeles, CA 90095   USA   EMail: lixia@cs.ucla.edu   Xiaohu Xu   Huawei Technologies   Huawei Building, No.3 Xinxi Rd.,   Shang-Di Information Industry Base, Hai-Dian District   Beijing 100085   P.R. China   Phone: +86 10 82836073   EMail: xuxh@huawei.comRaszuk, et al.                Informational                     [Page 8]

[8]ページ先頭

©2009-2025 Movatter.jp