Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

Obsoleted by:4306 HISTORIC
Errata Exist
Network Working Group                                           D. PiperRequest for Comments: 2407                               Network AlchemyCategory: Standards Track                                  November 1998The Internet IP Security Domain of Interpretation for ISAKMPStatus of this Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (1998).  All Rights Reserved.IESG NoteSection 4.4.4.2 states, "All implememtations within the IPSEC DOI   MUST support ESP_DES...".  Recent work in the area of cryptanalysis   suggests that DES may not be sufficiently strong for many   applications.  Therefore, it is very likely that the IETF will   deprecate the use of ESP_DES as a mandatory cipher suite in the near   future.  It will remain as an optional use protocol.  Although the   IPsec working group and the IETF in general have not settled on an   alternative algorithm (taking into account concerns of security and   performance), implementers may want to heed the recommendations ofsection 4.4.4.3 on the use of ESP_3DES.1. Abstract   The Internet Security Association and Key Management Protocol   (ISAKMP) defines a framework for security association management and   cryptographic key establishment for the Internet.  This framework   consists of defined exchanges, payloads, and processing guidelines   that occur within a given Domain of Interpretation (DOI).  This   document defines the Internet IP Security DOI (IPSEC DOI), which   instantiates ISAKMP for use with IP when IP uses ISAKMP to negotiate   security associations.   For a list of changes since the previous version of the IPSEC DOI,   please seeSection 7.Piper                       Standards Track                     [Page 1]

RFC 2407          IP Security Domain of Interpretation     November 19982. Introduction   Within ISAKMP, a Domain of Interpretation is used to group related   protocols using ISAKMP to negotiate security associations.  Security   protocols sharing a DOI choose security protocol and cryptographic   transforms from a common namespace and share key exchange protocol   identifiers.  They also share a common interpretation of DOI-specific   payload data content, including the Security Association and   Identification payloads.   Overall, ISAKMP places the following requirements on a DOI   definition:     o  define the naming scheme for DOI-specific protocol identifiers     o  define the interpretation for the Situation field     o  define the set of applicable security policies     o  define the syntax for DOI-specific SA Attributes (Phase II)     o  define the syntax for DOI-specific payload contents     o  define additional Key Exchange types, if needed     o  define additional Notification Message types, if needed   The remainder of this document details the instantiation of these   requirements for using the IP Security (IPSEC) protocols to provide   authentication, integrity, and/or confidentiality for IP packets sent   between cooperating host systems and/or firewalls.   For a description of the overall IPSEC architecture, see [ARCH],   [AH], and [ESP].3. Terms and Definitions   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this   document, are to be interpreted as described in [RFC 2119].4.1 IPSEC Naming Scheme   Within ISAKMP, all DOI's must be registered with the IANA in the   "Assigned Numbers" RFC [STD-2].  The IANA Assigned Number for the   Internet IP Security DOI (IPSEC DOI) is one (1).  Within the IPSEC   DOI, all well-known identifiers MUST be registered with the IANA   under the IPSEC DOI.  Unless otherwise noted, all tables within this   document refer to IANA Assigned Numbers for the IPSEC DOI.  SeeSection 6 for further information relating to the IANA registry for   the IPSEC DOI.   All multi-octet binary values are stored in network byte order.Piper                       Standards Track                     [Page 2]

RFC 2407          IP Security Domain of Interpretation     November 19984.2 IPSEC Situation Definition   Within ISAKMP, the Situation provides information that can be used by   the responder to make a policy determination about how to process the   incoming Security Association request.  For the IPSEC DOI, the   Situation field is a four (4) octet bitmask with the following   values.       Situation                   Value       ---------                   -----       SIT_IDENTITY_ONLY           0x01       SIT_SECRECY                 0x02       SIT_INTEGRITY               0x044.2.1 SIT_IDENTITY_ONLY   The SIT_IDENTITY_ONLY type specifies that the security association   will be identified by source identity information present in an   associated Identification Payload.  SeeSection 4.6.2 for a complete   description of the various Identification types.  All IPSEC DOI   implementations MUST support SIT_IDENTITY_ONLY by including an   Identification Payload in at least one of the Phase I Oakley   exchanges ([IKE], Section 5) and MUST abort any association setup   that does not include an Identification Payload.   If an initiator supports neither SIT_SECRECY nor SIT_INTEGRITY, the   situation consists only of the 4 octet situation bitmap and does not   include the Labeled Domain Identifier field (Figure 1,Section 4.6.1)   or any subsequent label information.  Conversely, if the initiator   supports either SIT_SECRECY or SIT_INTEGRITY, the Labeled Domain   Identifier MUST be included in the situation payload.4.2.2 SIT_SECRECY   The SIT_SECRECY type specifies that the security association is being   negotiated in an environment that requires labeled secrecy.  If   SIT_SECRECY is present in the Situation bitmap, the Situation field   will be followed by variable-length data that includes a sensitivity   level and compartment bitmask.  SeeSection 4.6.1 for a complete   description of the Security Association Payload format.   If an initiator does not support SIT_SECRECY, SIT_SECRECY MUST NOT be   set in the Situation bitmap and no secrecy level or category bitmaps   shall be included.   If a responder does not support SIT_SECRECY, a SITUATION-NOT-   SUPPORTED Notification Payload SHOULD be returned and the security   association setup MUST be aborted.Piper                       Standards Track                     [Page 3]

RFC 2407          IP Security Domain of Interpretation     November 19984.2.3 SIT_INTEGRITY   The SIT_INTEGRITY type specifies that the security association is   being negotiated in an environment that requires labeled integrity.   If SIT_INTEGRITY is present in the Situation bitmap, the Situation   field will be followed by variable-length data that includes an   integrity level and compartment bitmask.  If SIT_SECRECY is also in   use for the association, the integrity information immediately   follows the variable-length secrecy level and categories.  Seesection 4.6.1 for a complete description of the Security Association   Payload format.   If an initiator does not support SIT_INTEGRITY, SIT_INTEGRITY MUST   NOT be set in the Situation bitmap and no integrity level or category   bitmaps shall be included.   If a responder does not support SIT_INTEGRITY, a SITUATION-NOT-   SUPPORTED Notification Payload SHOULD be returned and the security   association setup MUST be aborted.4.3 IPSEC Security Policy Requirements   The IPSEC DOI does not impose specific security policy requirements   on any implementation.  Host system policy issues are outside of the   scope of this document.   However, the following sections touch on some of the issues that must   be considered when designing an IPSEC DOI host implementation.  This   section should be considered only informational in nature.4.3.1 Key Management Issues   It is expected that many systems choosing to implement ISAKMP will   strive to provide a protected domain of execution for a combined IKE   key management daemon.  On protected-mode multiuser operating   systems, this key management daemon will likely exist as a separate   privileged process.   In such an environment, a formalized API to introduce keying material   into the TCP/IP kernel may be desirable.  The IP Security   architecture does not place any requirements for structure or flow   between a host TCP/IP kernel and its key management provider.Piper                       Standards Track                     [Page 4]

RFC 2407          IP Security Domain of Interpretation     November 19984.3.2 Static Keying Issues   Host systems that implement static keys, either for use directly by   IPSEC, or for authentication purposes (see [IKE]Section 5.4), should   take steps to protect the static keying material when it is not   residing in a protected memory domain or actively in use by the   TCP/IP kernel.   For example, on a laptop, one might choose to store the static keys   in a configuration store that is, itself, encrypted under a private   password.   Depending on the operating system and utility software installed, it   may not be possible to protect the static keys once they've been   loaded into the TCP/IP kernel, however they should not be trivially   recoverable on initial system startup without having to satisfy some   additional form of authentication.4.3.3 Host Policy Issues   It is not realistic to assume that the transition to IPSEC will occur   overnight.  Host systems must be prepared to implement flexible   policy lists that describe which systems they desire to speak   securely with and which systems they require speak securely to them.   Some notion of proxy firewall addresses may also be required.   A minimal approach is probably a static list of IP addresses, network   masks, and a security required flag or flags.   A more flexible implementation might consist of a list of wildcard   DNS names (e.g. '*.foo.bar'), an in/out bitmask, and an optional   firewall address.  The wildcard DNS name would be used to match   incoming or outgoing IP addresses, the in/out bitmask would be used   to determine whether or not security was to be applied and in which   direction, and the optional firewall address would be used to   indicate whether or not tunnel mode would be needed to talk to the   target system though an intermediate firewall.4.3.4 Certificate Management   Host systems implementing a certificate-based authentication scheme   will need a mechanism for obtaining and managing a database of   certificates.   Secure DNS is to be one certificate distribution mechanism, however   the pervasive availability of secure DNS zones, in the short term, is   doubtful for many reasons.  What's far more likely is that hosts willPiper                       Standards Track                     [Page 5]

RFC 2407          IP Security Domain of Interpretation     November 1998   need an ability to import certificates that they acquire through   secure, out-of-band mechanisms, as well as an ability to export their   own certificates for use by other systems.   However, manual certificate management should not be done so as to   preclude the ability to introduce dynamic certificate discovery   mechanisms and/or protocols as they become available.4.4 IPSEC Assigned Numbers   The following sections list the Assigned Numbers for the IPSEC DOI:   Situation Identifiers, Protocol Identifiers, Transform Identifiers,   AH, ESP, and IPCOMP Transform Identifiers, Security Association   Attribute Type Values, Labeled Domain Identifiers, ID Payload Type   Values, and Notify Message Type Values.4.4.1 IPSEC Security Protocol Identifier   The ISAKMP proposal syntax was specifically designed to allow for the   simultaneous negotiation of multiple Phase II security protocol   suites within a single negotiation.  As a result, the protocol suites   listed below form the set of protocols that can be negotiated at the   same time.  It is a host policy decision as to what protocol suites   might be negotiated together.   The following table lists the values for the Security Protocol   Identifiers referenced in an ISAKMP Proposal Payload for the IPSEC   DOI.       Protocol ID                         Value       -----------                         -----       RESERVED                            0       PROTO_ISAKMP                        1       PROTO_IPSEC_AH                      2       PROTO_IPSEC_ESP                     3       PROTO_IPCOMP                        44.4.1.1 PROTO_ISAKMP   The PROTO_ISAKMP type specifies message protection required during   Phase I of the ISAKMP protocol.  The specific protection mechanism   used for the IPSEC DOI is described in [IKE].  All implementations   within the IPSEC DOI MUST support PROTO_ISAKMP.   NB: ISAKMP reserves the value one (1) across all DOI definitions.Piper                       Standards Track                     [Page 6]

RFC 2407          IP Security Domain of Interpretation     November 19984.4.1.2 PROTO_IPSEC_AH   The PROTO_IPSEC_AH type specifies IP packet authentication.  The   default AH transform provides data origin authentication, integrity   protection, and replay detection.  For export control considerations,   confidentiality MUST NOT be provided by any PROTO_IPSEC_AH transform.4.4.1.3 PROTO_IPSEC_ESP   The PROTO_IPSEC_ESP type specifies IP packet confidentiality.   Authentication, if required, must be provided as part of the ESP   transform.  The default ESP transform includes data origin   authentication, integrity protection, replay detection, and   confidentiality.4.4.1.4 PROTO_IPCOMP   The PROTO_IPCOMP type specifies IP payload compression as defined in   [IPCOMP].4.4.2 IPSEC ISAKMP Transform Identifiers   As part of an ISAKMP Phase I negotiation, the initiator's choice of   Key Exchange offerings is made using some host system policy   description.  The actual selection of Key Exchange mechanism is made   using the standard ISAKMP Proposal Payload.  The following table   lists the defined ISAKMP Phase I Transform Identifiers for the   Proposal Payload for the IPSEC DOI.       Transform                           Value       ---------                           -----       RESERVED                            0       KEY_IKE                             1   Within the ISAKMP and IPSEC DOI framework it is possible to define   key establishment protocols other than IKE (Oakley).  Previous   versions of this document defined types both for manual keying and   for schemes based on use of a generic Key Distribution Center (KDC).   These identifiers have been removed from the current document.   The IPSEC DOI can still be extended later to include values for   additional non-Oakley key establishment protocols for ISAKMP and   IPSEC, such as Kerberos [RFC-1510] or the Group Key Management   Protocol (GKMP) [RFC-2093].Piper                       Standards Track                     [Page 7]

RFC 2407          IP Security Domain of Interpretation     November 19984.4.2.1 KEY_IKE   The KEY_IKE type specifies the hybrid ISAKMP/Oakley Diffie-Hellman   key exchange (IKE) as defined in the [IKE] document.  All   implementations within the IPSEC DOI MUST support KEY_IKE.4.4.3 IPSEC AH Transform Identifiers   The Authentication Header Protocol (AH) defines one mandatory and   several optional transforms used to provide authentication,   integrity, and replay detection.  The following table lists the   defined AH Transform Identifiers for the ISAKMP Proposal Payload for   the IPSEC DOI.   Note: the Authentication Algorithm attribute MUST be specified to   identify the appropriate AH protection suite.  For example, AH_MD5   can best be thought of as a generic AH transform using MD5.  To   request the HMAC construction with AH, one specifies the AH_MD5   transform ID along with the Authentication Algorithm attribute set to   HMAC-MD5.  This is shown using the "Auth(HMAC-MD5)" notation in the   following sections.       Transform ID                        Value       ------------                        -----       RESERVED                            0-1       AH_MD5                              2       AH_SHA                              3       AH_DES                              4   Note: all mandatory-to-implement algorithms are listed as "MUST"   implement (e.g. AH_MD5) in the following sections.  All other   algorithms are optional and MAY be implemented in any particular   implementation.4.4.3.1 AH_MD5   The AH_MD5 type specifies a generic AH transform using MD5.  The   actual protection suite is determined in concert with an associated   SA attribute list.  A generic MD5 transform is currently undefined.   All implementations within the IPSEC DOI MUST support AH_MD5 along   with the Auth(HMAC-MD5) attribute.  This suite is defined as the   HMAC-MD5-96 transform described in [HMACMD5].   The AH_MD5 type along with the Auth(KPDK) attribute specifies the AH   transform (Key/Pad/Data/Key) described inRFC-1826.Piper                       Standards Track                     [Page 8]

RFC 2407          IP Security Domain of Interpretation     November 1998   Use of AH_MD5 with any other Authentication Algorithm attribute value   is currently undefined.4.4.3.2 AH_SHA   The AH_SHA type specifies a generic AH transform using SHA-1.  The   actual protection suite is determined in concert with an associated   SA attribute list.  A generic SHA transform is currently undefined.   All implementations within the IPSEC DOI MUST support AH_SHA along   with the Auth(HMAC-SHA) attribute.  This suite is defined as the   HMAC-SHA-1-96 transform described in [HMACSHA].   Use of AH_SHA with any other Authentication Algorithm attribute value   is currently undefined.4.4.3.3 AH_DES   The AH_DES type specifies a generic AH transform using DES.  The   actual protection suite is determined in concert with an associated   SA attribute list.  A generic DES transform is currently undefined.   The IPSEC DOI defines AH_DES along with the Auth(DES-MAC) attribute   to be a DES-MAC transform.  Implementations are not required to   support this mode.   Use of AH_DES with any other Authentication Algorithm attribute value   is currently undefined.4.4.4 IPSEC ESP Transform Identifiers   The Encapsulating Security Payload (ESP) defines one mandatory and   many optional transforms used to provide data confidentiality.  The   following table lists the defined ESP Transform Identifiers for the   ISAKMP Proposal Payload for the IPSEC DOI.   Note: when authentication, integrity protection, and replay detection   are required, the Authentication Algorithm attribute MUST be   specified to identify the appropriate ESP protection suite.  For   example, to request HMAC-MD5 authentication with 3DES, one specifies   the ESP_3DES transform ID with the Authentication Algorithm attribute   set to HMAC-MD5.  For additional processing requirements, seeSection4.5 (Authentication Algorithm).Piper                       Standards Track                     [Page 9]

RFC 2407          IP Security Domain of Interpretation     November 1998       Transform ID                        Value       ------------                        -----       RESERVED                            0       ESP_DES_IV64                        1       ESP_DES                             2       ESP_3DES                            3       ESP_RC5                             4       ESP_IDEA                            5       ESP_CAST                            6       ESP_BLOWFISH                        7       ESP_3IDEA                           8       ESP_DES_IV32                        9       ESP_RC4                             10       ESP_NULL                            11   Note: all mandatory-to-implement algorithms are listed as "MUST"   implement (e.g. ESP_DES) in the following sections.  All other   algorithms are optional and MAY be implemented in any particular   implementation.4.4.4.1 ESP_DES_IV64   The ESP_DES_IV64 type specifies the DES-CBC transform defined inRFC-1827 andRFC-1829 using a 64-bit IV.4.4.4.2 ESP_DES   The ESP_DES type specifies a generic DES transform using DES-CBC.   The actual protection suite is determined in concert with an   associated SA attribute list.  A generic transform is currently   undefined.   All implementations within the IPSEC DOI MUST support ESP_DES along   with the Auth(HMAC-MD5) attribute.  This suite is defined as the   [DES] transform, with authentication and integrity provided by HMAC   MD5 [HMACMD5].4.4.4.3 ESP_3DES   The ESP_3DES type specifies a generic triple-DES transform.  The   actual protection suite is determined in concert with an associated   SA attribute list.  The generic transform is currently undefined.   All implementations within the IPSEC DOI are strongly encouraged to   support ESP_3DES along with the Auth(HMAC-MD5) attribute.  This suite   is defined as the [ESPCBC] transform, with authentication and   integrity provided by HMAC MD5 [HMACMD5].Piper                       Standards Track                    [Page 10]

RFC 2407          IP Security Domain of Interpretation     November 19984.4.4.4 ESP_RC5   The ESP_RC5 type specifies the RC5 transform defined in [ESPCBC].4.4.4.5 ESP_IDEA   The ESP_IDEA type specifies the IDEA transform defined in [ESPCBC].4.4.4.6 ESP_CAST   The ESP_CAST type specifies the CAST transform defined in [ESPCBC].4.4.4.7 ESP_BLOWFISH   The ESP_BLOWFISH type specifies the BLOWFISH transform defined in   [ESPCBC].4.4.4.8 ESP_3IDEA   The ESP_3IDEA type is reserved for triple-IDEA.4.4.4.9 ESP_DES_IV32   The ESP_DES_IV32 type specifies the DES-CBC transform defined inRFC-1827 andRFC-1829 using a 32-bit IV.4.4.4.10 ESP_RC4   The ESP_RC4 type is reserved for RC4.4.4.4.11 ESP_NULL   The ESP_NULL type specifies no confidentiality is to be provided by   ESP.  ESP_NULL is used when ESP is being used to tunnel packets which   require only authentication, integrity protection, and replay   detection.   All implementations within the IPSEC DOI MUST support ESP_NULL.  The   ESP NULL transform is defined in [ESPNULL].  See the Authentication   Algorithm attribute description inSection 4.5 for additional   requirements relating to the use of ESP_NULL.4.4.5 IPSEC IPCOMP Transform Identifiers   The IP Compression (IPCOMP) transforms define optional compression   algorithms that can be negotiated to provide for IP payload   compression ([IPCOMP]).  The following table lists the defined IPCOMP   Transform Identifiers for the ISAKMP Proposal Payload within thePiper                       Standards Track                    [Page 11]

RFC 2407          IP Security Domain of Interpretation     November 1998   IPSEC DOI.       Transform ID                        Value       ------------                        -----       RESERVED                            0       IPCOMP_OUI                          1       IPCOMP_DEFLATE                      2       IPCOMP_LZS                          34.4.5.1 IPCOMP_OUI   The IPCOMP_OUI type specifies a proprietary compression transform.   The IPCOMP_OUI type must be accompanied by an attribute which further   identifies the specific vendor algorithm.4.4.5.2 IPCOMP_DEFLATE   The IPCOMP_DEFLATE type specifies the use of the "zlib" deflate   algorithm as specified in [DEFLATE].4.4.5.3 IPCOMP_LZS   The IPCOMP_LZS type specifies the use of the Stac Electronics LZS   algorithm as specified in [LZS].4.5 IPSEC Security Association Attributes   The following SA attribute definitions are used in Phase II of an IKE   negotiation.  Attribute types can be either Basic (B) or Variable-   Length (V).  Encoding of these attributes is defined in the base   ISAKMP specification.   Attributes described as basic MUST NOT be encoded as variable.   Variable length attributes MAY be encoded as basic attributes if   their value can fit into two octets.  See [IKE] for further   information on attribute encoding in the IPSEC DOI.  All restrictions   listed in [IKE] also apply to the IPSEC DOI.Piper                       Standards Track                    [Page 12]

RFC 2407          IP Security Domain of Interpretation     November 1998       Attribute Types             class               value           type       -------------------------------------------------       SA Life Type                1               B       SA Life Duration            2               V       Group Description           3               B       Encapsulation Mode          4               B       Authentication Algorithm    5               B       Key Length                  6               B       Key Rounds                  7               B       Compress Dictionary Size    8               B       Compress Private Algorithm  9               V       Class Values         SA Life Type         SA Duration           Specifies the time-to-live for the overall security           association.  When the SA expires, all keys negotiated under           the association (AH or ESP) must be renegotiated.  The life           type values are:           RESERVED                0           seconds                 1           kilobytes               2           Values 3-61439 are reserved to IANA.  Values 61440-65535 are           for private use.  For a given Life Type, the value of the           Life Duration attribute defines the actual length of the           component lifetime -- either a number of seconds, or a number           of Kbytes that can be protected.           If unspecified, the default value shall be assumed to be           28800 seconds (8 hours).           An SA Life Duration attribute MUST always follow an SA Life           Type which describes the units of duration.           SeeSection 4.5.4 for additional information relating to           lifetime notification.         Group Description           Specifies the Oakley Group to be used in a PFS QM           negotiation.  For a list of supported values, seeAppendix A           of [IKE].Piper                       Standards Track                    [Page 13]

RFC 2407          IP Security Domain of Interpretation     November 1998         Encapsulation Mode           RESERVED                0           Tunnel                  1           Transport               2           Values 3-61439 are reserved to IANA.  Values 61440-65535 are           for private use.           If unspecified, the default value shall be assumed to be           unspecified (host-dependent).         Authentication Algorithm           RESERVED                0           HMAC-MD5                1           HMAC-SHA                2           DES-MAC                 3           KPDK                    4           Values 5-61439 are reserved to IANA.  Values 61440-65535 are           for private use.           There is no default value for Auth Algorithm, as it must be           specified to correctly identify the applicable AH or ESP           transform, except in the following case.           When negotiating ESP without authentication, the Auth           Algorithm attribute MUST NOT be included in the proposal.           When negotiating ESP without confidentiality, the Auth           Algorithm attribute MUST be included in the proposal and the           ESP transform ID must be ESP_NULL.         Key Length           RESERVED                0           There is no default value for Key Length, as it must be           specified for transforms using ciphers with variable key           lengths.  For fixed length ciphers, the Key Length attribute           MUST NOT be sent.         Key Rounds           RESERVED                0           There is no default value for Key Rounds, as it must be           specified for transforms using ciphers with varying numbers           of rounds.Piper                       Standards Track                    [Page 14]

RFC 2407          IP Security Domain of Interpretation     November 1998         Compression Dictionary Size           RESERVED                0           Specifies the log2 maximum size of the dictionary.           There is no default value for dictionary size.         Compression Private Algorithm           Specifies a private vendor compression algorithm.  The first           three (3) octets must be an IEEE assigned company_id (OUI).           The next octet may be a vendor specific compression subtype,           followed by zero or more octets of vendor data.4.5.1 Required Attribute Support   To ensure basic interoperability, all implementations MUST be   prepared to negotiate all of the following attributes.           SA Life Type           SA Duration           Auth Algorithm4.5.2 Attribute Parsing Requirement (Lifetime)   To allow for flexible semantics, the IPSEC DOI requires that a   conforming ISAKMP implementation MUST correctly parse an attribute   list that contains multiple instances of the same attribute class, so   long as the different attribute entries do not conflict with one   another.  Currently, the only attributes which requires this   treatment are Life Type and Duration.   To see why this is important, the following example shows the binary   encoding of a four entry attribute list that specifies an SA Lifetime   of either 100MB or 24 hours.  (See Section 3.3 of [ISAKMP] for a   complete description of the attribute encoding format.)     Attribute #1:       0x80010001  (AF = 1, type = SA Life Type, value = seconds)     Attribute #2:       0x00020004  (AF = 0, type = SA Duration, length = 4 bytes)       0x00015180  (value = 0x15180 = 86400 seconds = 24 hours)     Attribute #3:       0x80010002  (AF = 1, type = SA Life Type, value = KB)Piper                       Standards Track                    [Page 15]

RFC 2407          IP Security Domain of Interpretation     November 1998     Attribute #4:       0x00020004  (AF = 0, type = SA Duration, length = 4 bytes)       0x000186A0  (value = 0x186A0 = 100000KB = 100MB)   If conflicting attributes are detected, an ATTRIBUTES-NOT-SUPPORTED   Notification Payload SHOULD be returned and the security association   setup MUST be aborted.4.5.3 Attribute Negotiation   If an implementation receives a defined IPSEC DOI attribute (or   attribute value) which it does not support, an ATTRIBUTES-NOT-SUPPORT   SHOULD be sent and the security association setup MUST be aborted,   unless the attribute value is in the reserved range.   If an implementation receives an attribute value in the reserved   range, an implementation MAY chose to continue based on local policy.4.5.4 Lifetime Notification   When an initiator offers an SA lifetime greater than what the   responder desires based on their local policy, the responder has   three choices: 1) fail the negotiation entirely; 2) complete the   negotiation but use a shorter lifetime than what was offered; 3)   complete the negotiation and send an advisory notification to the   initiator indicating the responder's true lifetime.  The choice of   what the responder actually does is implementation specific and/or   based on local policy.   To ensure interoperability in the latter case, the IPSEC DOI requires   the following only when the responder wishes to notify the initiator:   if the initiator offers an SA lifetime longer than the responder is   willing to accept, the responder SHOULD include an ISAKMP   Notification Payload in the exchange that includes the responder's   IPSEC SA payload.Section 4.6.3.1 defines the payload layout for the   RESPONDER-LIFETIME Notification Message type which MUST be used for   this purpose.4.6 IPSEC Payload Content   The following sections describe those ISAKMP payloads whose data   representations are dependent on the applicable DOI.4.6.1 Security Association Payload   The following diagram illustrates the content of the Security   Association Payload for the IPSEC DOI.  SeeSection 4.2 for a   description of the Situation bitmap.Piper                       Standards Track                    [Page 16]

RFC 2407          IP Security Domain of Interpretation     November 1998    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !  Next Payload !   RESERVED    !        Payload Length         !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !                Domain of Interpretation (IPSEC)               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !                       Situation (bitmap)                      !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !                    Labeled Domain Identifier                  !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !  Secrecy Length (in octets)   !           RESERVED            !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ~                        Secrecy Level                          ~   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ! Secrecy Cat. Length (in bits) !           RESERVED            !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ~                    Secrecy Category Bitmap                    ~   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ! Integrity Length (in octets)  !           RESERVED            !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ~                       Integrity Level                         ~   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ! Integ. Cat. Length (in bits)  !           RESERVED            !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ~                  Integrity Category Bitmap                    ~   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               Figure 1: Security Association Payload Format   The Security Association Payload is defined as follows:     o  Next Payload (1 octet) - Identifier for the payload type of        the next payload in the message.  If the current payload is the        last in the message, this field will be zero (0).     o  RESERVED (1 octet) - Unused, must be zero (0).     o  Payload Length (2 octets) - Length, in octets, of the current        payload, including the generic header.     o  Domain of Interpretation (4 octets) - Specifies the IPSEC DOI,        which has been assigned the value one (1).     o  Situation (4 octets) - Bitmask used to interpret the remainder        of the Security Association Payload.  SeeSection 4.2 for a        complete list of values.Piper                       Standards Track                    [Page 17]

RFC 2407          IP Security Domain of Interpretation     November 1998     o  Labeled Domain Identifier (4 octets) - IANA Assigned Number used        to interpret the Secrecy and Integrity information.     o  Secrecy Length (2 octets) - Specifies the length, in octets, of        the secrecy level identifier, excluding pad bits.     o  RESERVED (2 octets) - Unused, must be zero (0).     o  Secrecy Level (variable length) - Specifies the mandatory        secrecy level required.  The secrecy level MUST be padded with        zero (0) to align on the next 32-bit boundary.     o  Secrecy Category Length (2 octets) - Specifies the length, in        bits, of the secrecy category (compartment) bitmap, excluding        pad bits.     o  RESERVED (2 octets) - Unused, must be zero (0).     o  Secrecy Category Bitmap (variable length) - A bitmap used to        designate secrecy categories (compartments) that are required.        The bitmap MUST be padded with zero (0) to align on the next        32-bit boundary.     o  Integrity Length (2 octets) - Specifies the length, in octets,        of the integrity level identifier, excluding pad bits.     o  RESERVED (2 octets) - Unused, must be zero (0).     o  Integrity Level (variable length) - Specifies the mandatory        integrity level required.  The integrity level MUST be padded        with zero (0) to align on the next 32-bit boundary.     o  Integrity Category Length (2 octets) - Specifies the length, in        bits, of the integrity category (compartment) bitmap, excluding        pad bits.     o  RESERVED (2 octets) - Unused, must be zero (0).     o  Integrity Category Bitmap (variable length) - A bitmap used to        designate integrity categories (compartments) that are required.        The bitmap MUST be padded with zero (0) to align on the next        32-bit boundary.4.6.1.1 IPSEC Labeled Domain Identifiers   The following table lists the assigned values for the Labeled Domain   Identifier field contained in the Situation field of the Security   Association Payload.Piper                       Standards Track                    [Page 18]

RFC 2407          IP Security Domain of Interpretation     November 1998       Domain                              Value       -------                             -----       RESERVED                            04.6.2 Identification Payload Content   The Identification Payload is used to identify the initiator of the   Security Association.  The identity of the initiator SHOULD be used   by the responder to determine the correct host system security policy   requirement for the association.  For example, a host might choose to   require authentication and integrity without confidentiality (AH)   from a certain set of IP addresses and full authentication with   confidentiality (ESP) from another range of IP addresses.  The   Identification Payload provides information that can be used by the   responder to make this decision.   During Phase I negotiations, the ID port and protocol fields MUST be   set to zero or to UDP port 500.  If an implementation receives any   other values, this MUST be treated as an error and the security   association setup MUST be aborted.  This event SHOULD be auditable.   The following diagram illustrates the content of the Identification   Payload.    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !  Next Payload !   RESERVED    !        Payload Length         !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   !   ID Type     !  Protocol ID  !             Port              !   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ~                     Identification Data                       ~   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                  Figure 2: Identification Payload Format   The Identification Payload fields are defined as follows:     o  Next Payload (1 octet) - Identifier for the payload type of        the next payload in the message.  If the current payload is the        last in the message, this field will be zero (0).     o  RESERVED (1 octet) - Unused, must be zero (0).     o  Payload Length (2 octets) - Length, in octets, of the        identification data, including the generic header.     o  Identification Type (1 octet) - Value describing the identity        information found in the Identification Data field.Piper                       Standards Track                    [Page 19]

RFC 2407          IP Security Domain of Interpretation     November 1998     o  Protocol ID (1 octet) - Value specifying an associated IP        protocol ID (e.g. UDP/TCP).  A value of zero means that the        Protocol ID field should be ignored.     o  Port (2 octets) - Value specifying an associated port.  A value        of zero means that the Port field should be ignored.     o  Identification Data (variable length) - Value, as indicated by        the Identification Type.4.6.2.1 Identification Type Values   The following table lists the assigned values for the Identification   Type field found in the Identification Payload.       ID Type                   Value       -------                   -----       RESERVED                            0       ID_IPV4_ADDR                        1       ID_FQDN                             2       ID_USER_FQDN                        3       ID_IPV4_ADDR_SUBNET                 4       ID_IPV6_ADDR                        5       ID_IPV6_ADDR_SUBNET                 6       ID_IPV4_ADDR_RANGE                  7       ID_IPV6_ADDR_RANGE                  8       ID_DER_ASN1_DN                      9       ID_DER_ASN1_GN                      10       ID_KEY_ID                           11   For types where the ID entity is variable length, the size of the ID   entity is computed from size in the ID payload header.   When an IKE exchange is authenticated using certificates (of any   format), any ID's used for input to local policy decisions SHOULD be   contained in the certificate used in the authentication of the   exchange.4.6.2.2 ID_IPV4_ADDR   The ID_IPV4_ADDR type specifies a single four (4) octet IPv4 address.4.6.2.3 ID_FQDN   The ID_FQDN type specifies a fully-qualified domain name string.  An   example of a ID_FQDN is, "foo.bar.com".  The string should not   contain any terminators.Piper                       Standards Track                    [Page 20]

RFC 2407          IP Security Domain of Interpretation     November 19984.6.2.4 ID_USER_FQDN   The ID_USER_FQDN type specifies a fully-qualified username string, An   example of a ID_USER_FQDN is, "piper@foo.bar.com".  The string should   not contain any terminators.4.6.2.5 ID_IPV4_ADDR_SUBNET   The ID_IPV4_ADDR_SUBNET type specifies a range of IPv4 addresses,   represented by two four (4) octet values.  The first value is an IPv4   address.  The second is an IPv4 network mask.  Note that ones (1s) in   the network mask indicate that the corresponding bit in the address   is fixed, while zeros (0s) indicate a "wildcard" bit.4.6.2.6 ID_IPV6_ADDR   The ID_IPV6_ADDR type specifies a single sixteen (16) octet IPv6   address.4.6.2.7 ID_IPV6_ADDR_SUBNET   The ID_IPV6_ADDR_SUBNET type specifies a range of IPv6 addresses,   represented by two sixteen (16) octet values.  The first value is an   IPv6 address.  The second is an IPv6 network mask.  Note that ones   (1s) in the network mask indicate that the corresponding bit in the   address is fixed, while zeros (0s) indicate a "wildcard" bit.4.6.2.8 ID_IPV4_ADDR_RANGE   The ID_IPV4_ADDR_RANGE type specifies a range of IPv4 addresses,   represented by two four (4) octet values.  The first value is the   beginning IPv4 address (inclusive) and the second value is the ending   IPv4 address (inclusive).  All addresses falling between the two   specified addresses are considered to be within the list.4.6.2.9 ID_IPV6_ADDR_RANGE   The ID_IPV6_ADDR_RANGE type specifies a range of IPv6 addresses,   represented by two sixteen (16) octet values.  The first value is the   beginning IPv6 address (inclusive) and the second value is the ending   IPv6 address (inclusive).  All addresses falling between the two   specified addresses are considered to be within the list.4.6.2.10 ID_DER_ASN1_DN   The ID_DER_ASN1_DN type specifies the binary DER encoding of an ASN.1   X.500 Distinguished Name [X.501] of the principal whose certificates   are being exchanged to establish the SA.Piper                       Standards Track                    [Page 21]

RFC 2407          IP Security Domain of Interpretation     November 19984.6.2.11 ID_DER_ASN1_GN   The ID_DER_ASN1_GN type specifies the binary DER encoding of an ASN.1   X.500 GeneralName [X.509] of the principal whose certificates are   being exchanged to establish the SA.4.6.2.12 ID_KEY_ID   The ID_KEY_ID type specifies an opaque byte stream which may be used   to pass vendor-specific information necessary to identify which pre-   shared key should be used to authenticate Aggressive mode   negotiations.4.6.3 IPSEC Notify Message Types   ISAKMP defines two blocks of Notify Message codes, one for errors and   one for status messages.  ISAKMP also allocates a portion of each   block for private use within a DOI.  The IPSEC DOI defines the   following private message types for its own use.       Notify Messages - Error Types       Value       -----------------------------       -----       RESERVED                            8192       Notify Messages - Status Types      Value       ------------------------------      -----       RESPONDER-LIFETIME                  24576       REPLAY-STATUS                       24577       INITIAL-CONTACT                     24578   Notification Status Messages MUST be sent under the protection of an   ISAKMP SA: either as a payload in the last Main Mode exchange; in a   separate Informational Exchange after Main Mode or Aggressive Mode   processing is complete; or as a payload in any Quick Mode exchange.   These messages MUST NOT be sent in Aggressive Mode exchange, since   Aggressive Mode does not provide the necessary protection to bind the   Notify Status Message to the exchange.   Nota Bene: a Notify payload is fully protected only in Quick Mode,   where the entire payload is included in the HASH(n) digest.  In Main   Mode, while the notify payload is encrypted, it is not currently   included in the HASH(n) digests.  As a result, an active substitution   attack on the Main Mode ciphertext could cause the notify status   message type to be corrupted.  (This is true, in general, for the   last message of any Main Mode exchange.)  While the risk is small, a   corrupt notify message might cause the receiver to abort the entire   negotiation thinking that the sender encountered a fatal error.Piper                       Standards Track                    [Page 22]

RFC 2407          IP Security Domain of Interpretation     November 1998   Implementation Note: the ISAKMP protocol does not guarantee delivery   of Notification Status messages when sent in an ISAKMP Informational   Exchange.  To ensure receipt of any particular message, the sender   SHOULD include a Notification Payload in a defined Main Mode or Quick   Mode exchange which is protected by a retransmission timer.4.6.3.1 RESPONDER-LIFETIME   The RESPONDER-LIFETIME status message may be used to communicate the   IPSEC SA lifetime chosen by the responder.   When present, the Notification Payload MUST have the following   format:     o  Payload Length - set to length of payload + size of data (var)     o  DOI - set to IPSEC DOI (1)     o  Protocol ID - set to selected Protocol ID from chosen SA     o  SPI Size - set to either sixteen (16) (two eight-octet ISAKMP        cookies) or four (4) (one IPSEC SPI)     o  Notify Message Type - set to RESPONDER-LIFETIME (Section 4.6.3)     o  SPI - set to the two ISAKMP cookies or to the sender's inbound        IPSEC SPI     o  Notification Data - contains an ISAKMP attribute list with the        responder's actual SA lifetime(s)   Implementation Note: saying that the Notification Data field contains   an attribute list is equivalent to saying that the Notification Data   field has zero length and the Notification Payload has an associated   attribute list.4.6.3.2 REPLAY-STATUS   The REPLAY-STATUS status message may be used for positive   confirmation of the responder's election on whether or not he is to   perform anti-replay detection.   When present, the Notification Payload MUST have the following   format:     o  Payload Length - set to length of payload + size of data (4)     o  DOI - set to IPSEC DOI (1)     o  Protocol ID - set to selected Protocol ID from chosen SA     o  SPI Size - set to either sixteen (16) (two eight-octet ISAKMP        cookies) or four (4) (one IPSEC SPI)     o  Notify Message Type - set to REPLAY-STATUS     o  SPI - set to the two ISAKMP cookies or to the sender's inbound        IPSEC SPI     o  Notification Data - a 4 octet value:Piper                       Standards Track                    [Page 23]

RFC 2407          IP Security Domain of Interpretation     November 1998          0 = replay detection disabled          1 = replay detection enabled4.6.3.3 INITIAL-CONTACT   The INITIAL-CONTACT status message may be used when one side wishes   to inform the other that this is the first SA being established with   the remote system.  The receiver of this Notification Message might   then elect to delete any existing SA's it has for the sending system   under the assumption that the sending system has rebooted and no   longer has access to the original SA's and their associated keying   material.  When used, the content of the Notification Data field   SHOULD be null (i.e. the Payload Length should be set to the fixed   length of Notification Payload).   When present, the Notification Payload MUST have the following   format:     o  Payload Length - set to length of payload + size of data (0)     o  DOI - set to IPSEC DOI (1)     o  Protocol ID - set to selected Protocol ID from chosen SA     o  SPI Size - set to sixteen (16) (two eight-octet ISAKMP cookies)     o  Notify Message Type - set to INITIAL-CONTACT     o  SPI - set to the two ISAKMP cookies     o  Notification Data - <not included>4.7 IPSEC Key Exchange Requirements   The IPSEC DOI introduces no additional Key Exchange types.5. Security Considerations   This entire memo pertains to the Internet Key Exchange protocol   ([IKE]), which combines ISAKMP ([ISAKMP]) and Oakley ([OAKLEY]) to   provide for the derivation of cryptographic keying material in a   secure and authenticated manner.  Specific discussion of the various   security protocols and transforms identified in this document can be   found in the associated base documents and in the cipher references.6. IANA Considerations   This document contains many "magic" numbers to be maintained by the   IANA.  This section explains the criteria to be used by the IANA to   assign additional numbers in each of these lists.  All values not   explicitly defined in previous sections are reserved to IANA.Piper                       Standards Track                    [Page 24]

RFC 2407          IP Security Domain of Interpretation     November 19986.1 IPSEC Situation Definition   The Situation Definition is a 32-bit bitmask which represents the   environment under which the IPSEC SA proposal and negotiation is   carried out.  Requests for assignments of new situations must be   accompanied by an RFC which describes the interpretation for the   associated bit.   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.   The upper two bits are reserved for private use amongst cooperating   systems.6.2 IPSEC Security Protocol Identifiers   The Security Protocol Identifier is an 8-bit value which identifies a   security protocol suite being negotiated.  Requests for assignments   of new security protocol identifiers must be accompanied by an RFC   which describes the requested security protocol.  [AH] and [ESP] are   examples of security protocol documents.   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.   The values 249-255 are reserved for private use amongst cooperating   systems.6.3 IPSEC ISAKMP Transform Identifiers   The IPSEC ISAKMP Transform Identifier is an 8-bit value which   identifies a key exchange protocol to be used for the negotiation.   Requests for assignments of new ISAKMP transform identifiers must be   accompanied by an RFC which describes the requested key exchange   protocol.  [IKE] is an example of one such document.   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.   The values 249-255 are reserved for private use amongst cooperating   systems.Piper                       Standards Track                    [Page 25]

RFC 2407          IP Security Domain of Interpretation     November 19986.4 IPSEC AH Transform Identifiers   The IPSEC AH Transform Identifier is an 8-bit value which identifies   a particular algorithm to be used to provide integrity protection for   AH.  Requests for assignments of new AH transform identifiers must be   accompanied by an RFC which describes how to use the algorithm within   the AH framework ([AH]).   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.   The values 249-255 are reserved for private use amongst cooperating   systems.6.5 IPSEC ESP Transform Identifiers   The IPSEC ESP Transform Identifier is an 8-bit value which identifies   a particular algorithm to be used to provide secrecy protection for   ESP.  Requests for assignments of new ESP transform identifiers must   be accompanied by an RFC which describes how to use the algorithm   within the ESP framework ([ESP]).   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.   The values 249-255 are reserved for private use amongst cooperating   systems.6.6 IPSEC IPCOMP Transform Identifiers   The IPSEC IPCOMP Transform Identifier is an 8-bit value which   identifier a particular algorithm to be used to provide IP-level   compression before ESP.  Requests for assignments of new IPCOMP   transform identifiers must be accompanied by an RFC which describes   how to use the algorithm within the IPCOMP framework ([IPCOMP]).  In   addition, the requested algorithm must be published and in the public   domain.   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.Piper                       Standards Track                    [Page 26]

RFC 2407          IP Security Domain of Interpretation     November 1998   The values 1-47 are reserved for algorithms for which an RFC has been   approved for publication.  The values 48-63 are reserved for private   use amongst cooperating systems.  The values 64-255 are reserved for   future expansion.6.7 IPSEC Security Association Attributes   The IPSEC Security Association Attribute consists of a 16-bit type   and its associated value.  IPSEC SA attributes are used to pass   miscellaneous values between ISAKMP peers.  Requests for assignments   of new IPSEC SA attributes must be accompanied by an Internet Draft   which describes the attribute encoding (Basic/Variable-Length) and   its legal values.Section 4.5 of this document provides an example   of such a description.   The values 32001-32767 are reserved for private use amongst   cooperating systems.6.8 IPSEC Labeled Domain Identifiers   The IPSEC Labeled Domain Identifier is a 32-bit value which   identifies a namespace in which the Secrecy and Integrity levels and   categories values are said to exist.  Requests for assignments of new   IPSEC Labeled Domain Identifiers should be granted on demand.  No   accompanying documentation is required, though Internet Drafts are   encouraged when appropriate.   The values 0x80000000-0xffffffff are reserved for private use amongst   cooperating systems.6.9 IPSEC Identification Type   The IPSEC Identification Type is an 8-bit value which is used as a   discriminant for interpretation of the variable-length Identification   Payload.  Requests for assignments of new IPSEC Identification Types   must be accompanied by an RFC which describes how to use the   identification type within IPSEC.   If the RFC is not on the standards-track (i.e., it is an   informational or experimental RFC), it must be explicitly reviewed   and approved by the IESG before the RFC is published and the   transform identifier is assigned.   The values 249-255 are reserved for private use amongst cooperating   systems.Piper                       Standards Track                    [Page 27]

RFC 2407          IP Security Domain of Interpretation     November 19986.10 IPSEC Notify Message Types   The IPSEC Notify Message Type is a 16-bit value taken from the range   of values reserved by ISAKMP for each DOI.  There is one range for   error messages (8192-16383) and a different range for status messages   (24576-32767).  Requests for assignments of new Notify Message Types   must be accompanied by an Internet Draft which describes how to use   the identification type within IPSEC.   The values 16001-16383 and the values 32001-32767 are reserved for   private use amongst cooperating systems.7. Change Log7.1 Changes from V9     o  add explicit reference to [IPCOMP], [DEFLATE], and [LZS]     o  allow RESPONDER-LIFETIME and REPLAY-STATUS to be directed        at an IPSEC SPI in addition to the ISAKMP "SPI"     o  added padding exclusion to Secrecy and Integrity Length text     o  added forward reference to Section 4.5 inSection 4.4.4     o  update document references7.2 Changes from V8     o  update IPCOMP identifier range to better reflect IPCOMP draft     o  update IANA considerations per Jeff/Ted's suggested text     o  eliminate references to DES-MAC ID ([DESMAC])     o  correct bug in Notify section; ISAKMP Notify values are 16-bits7.3 Changes from V7     o  corrected name of IPCOMP (IP Payload Compression)     o  corrected references to [ESPCBC]     o  added missing Secrecy Level and Integrity Level to Figure 1     o  removed ID references to PF_KEY and ARCFOUR     o  updated Basic/Variable text to align with [IKE]     o  updated document references and add intro pointer to [ARCH]     o  updated Notification requirements; remove aggressive reference     o  added clarification about protection for Notify payloads     o  restored RESERVED to ESP transform ID namespace; moved ESP_NULL     o  added requirement for ESP_NULL support and [ESPNULL] reference     o  added clarification on Auth Alg use with AH/ESP     o  added restriction against using conflicting AH/Auth combinations7.4 Changes from V6   The following changes were made relative to the IPSEC DOI V6:Piper                       Standards Track                    [Page 28]

RFC 2407          IP Security Domain of Interpretation     November 1998     o  added IANA Considerations section     o  moved most IANA numbers to IANA Considerations section     o  added prohibition on sending (V) encoding for (B) attributes     o  added prohibition on sending Key Length attribute for fixed        length ciphers (e.g. DES)     o  replaced references to ISAKMP/Oakley with IKE     o  renamed ESP_ARCFOUR to ESP_RC4     o  updated Security Considerations section     o  updated document references7.5 Changes from V5   The following changes were made relative to the IPSEC DOI V5:     o  changed SPI size in Lifetime Notification text     o  changed REPLAY-ENABLED to REPLAY-STATUS     o  moved RESPONDER-LIFETIME payload definition fromSection 4.5.4        toSection 4.6.3.1     o  added explicit payload layout for 4.6.3.3     o  added Implementation Note toSection 4.6.3 introduction     o  changed AH_SHA text to require SHA-1 in addition to MD5     o  updated document references7.6 Changes from V4   The following changes were made relative to the IPSEC DOI V4:     o  moved compatibility AH KPDK authentication method from AH        transform ID to Authentication Algorithm identifier     o  added REPLAY-ENABLED notification message type per Architecture     o  added INITIAL-CONTACT notification message type per list     o  added text to ensure protection for Notify Status messages     o  added Lifetime qualification to attribute parsing section     o  added clarification that Lifetime notification is optional     o  removed private Group Description list (now points at [IKE])     o  replaced Terminology with pointer toRFC-2119     o  updated HMAC MD5 and SHA-1 ID references     o  updatedSection 1 (Abstract)     o  updatedSection 4.4 (IPSEC Assigned Numbers)     o  added restriction for ID port/protocol values for Phase I7.7 Changes from V3 to V4   The following changes were made relative to the IPSEC DOI V3, that   was posted to the IPSEC mailing list prior to the Munich IETF:     o  added ESP transform identifiers for NULL and ARCFOURPiper                       Standards Track                    [Page 29]

RFC 2407          IP Security Domain of Interpretation     November 1998     o  renamed HMAC Algorithm to Auth Algorithm to accommodate        DES-MAC and optional authentication/integrity for ESP     o  added AH and ESP DES-MAC algorithm identifiers     o  removed KEY_MANUAL and KEY_KDC identifier definitions     o  added lifetime duration MUST follow lifetype attribute to        SA Life Type and SA Life Duration attribute definition     o  added lifetime notification and IPSEC DOI message type table     o  added optional authentication and confidentiality        restrictions to MAC Algorithm attribute definition     o  corrected attribute parsing example (used obsolete attribute)     o  corrected several Internet Draft document references     o  added ID_KEY_ID per ipsec list discussion (18-Mar-97)     o  removed Group Description default for PFS QM ([IKE] MUST)Acknowledgments   This document is derived, in part, from previous works by Douglas   Maughan, Mark Schertler, Mark Schneider, Jeff Turner, Dan Harkins,   and Dave Carrel.  Matt Thomas, Roy Pereira, Greg Carter, and Ran   Atkinson also contributed suggestions and, in many cases, text.References   [AH]      Kent, S., and R. Atkinson, "IP Authentication Header",RFC2402, November 1998.   [ARCH]    Kent, S., and R. Atkinson, "Security Architecture for the             Internet Protocol",RFC 2401, November 1998.   [DEFLATE] Pereira, R., "IP Payload Compression Using DEFLATE",RFC2394, August 1998.   [ESP]     Kent, S., and R. Atkinson, "IP Encapsulating Security             Payload (ESP)",RFC 2406, November 1998.   [ESPCBC]  Pereira, R., and R. Adams, "The ESP CBC-Mode Cipher             Algorithms",RFC 2451, November 1998.   [ESPNULL] Glenn, R., and S. Kent, "The NULL Encryption Algorithm and             Its Use With IPsec",RFC 2410, November 1998.   [DES]     Madson, C., and N. Doraswamy, "The ESP DES-CBC Cipher             Algorithm With Explicit IV",RFC 2405, November 1998.   [HMACMD5] Madson, C., and R. Glenn, "The Use of HMAC-MD5 within ESP             and AH",RFC 2403, November 1998.Piper                       Standards Track                    [Page 30]

RFC 2407          IP Security Domain of Interpretation     November 1998   [HMACSHA] Madson, C., and R. Glenn, "The Use of HMAC-SHA-1-96 within             ESP and AH",RFC 2404, November 1998.   [IKE]     Harkins, D., and D. Carrel, D., "The Internet Key Exchange             (IKE)",RFC 2409, November 1998.   [IPCOMP]  Shacham, A., Monsour, R., Pereira, R., and M. Thomas, "IP             Payload Compression Protocol (IPComp)",RFC 2393, August             1998.   [ISAKMP]  Maughan, D., Schertler, M., Schneider, M., and J. Turner,             "Internet Security Association and Key Management Protocol             (ISAKMP)",RFC 2408, November 1998.   [LZS]     Friend, R., and R. Monsour, "IP Payload Compression Using             LZS",RFC 2395, August 1998.   [OAKLEY]  Orman, H., "The OAKLEY Key Determination Protocol",RFC2412, November 1998.   [X.501]   ISO/IEC 9594-2, "Information Technology - Open Systems             Interconnection - The Directory:  Models", CCITT/ITU             Recommendation X.501, 1993.   [X.509]   ISO/IEC 9594-8, "Information Technology - Open Systems             Interconnection - The Directory:  Authentication             Framework", CCITT/ITU Recommendation X.509, 1993.Author's Address   Derrell Piper   Network Alchemy   1521.5 Pacific Ave   Santa Cruz, California, 95060   United States of America   Phone: +1 408 460-3822   EMail: ddp@network-alchemy.comPiper                       Standards Track                    [Page 31]

RFC 2407          IP Security Domain of Interpretation     November 1998Full Copyright Statement   Copyright (C) The Internet Society (1998).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Piper                       Standards Track                    [Page 32]

[8]ページ先頭

©2009-2025 Movatter.jp