Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Internet Research Task Force (IRTF)                         S. JosefssonRequest for Comments: 8032                                        SJD ABCategory: Informational                                     I. LiusvaaraISSN: 2070-1721                                              Independent                                                            January 2017Edwards-Curve Digital Signature Algorithm (EdDSA)Abstract   This document describes elliptic curve signature scheme Edwards-curve   Digital Signature Algorithm (EdDSA).  The algorithm is instantiated   with recommended parameters for the edwards25519 and edwards448   curves.  An example implementation and test vectors are provided.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Research Task Force   (IRTF).  The IRTF publishes the results of Internet-related research   and development activities.  These results might not be suitable for   deployment.  This RFC represents the consensus of the Crypto Forum   Research Group of the Internet Research Task Force (IRTF).  Documents   approved for publication by the IRSG are not a candidate for any   level of Internet Standard; seeSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc8032.Copyright Notice   Copyright (c) 2017 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.Josefsson & Liusvaara         Informational                     [Page 1]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .32.  Notation and Conventions  . . . . . . . . . . . . . . . . . .43.  EdDSA Algorithm . . . . . . . . . . . . . . . . . . . . . . .53.1.  Encoding  . . . . . . . . . . . . . . . . . . . . . . . .73.2.  Keys  . . . . . . . . . . . . . . . . . . . . . . . . . .73.3.  Sign  . . . . . . . . . . . . . . . . . . . . . . . . . .83.4.  Verify  . . . . . . . . . . . . . . . . . . . . . . . . .84.  PureEdDSA, HashEdDSA, and Naming  . . . . . . . . . . . . . .85.  EdDSA Instances . . . . . . . . . . . . . . . . . . . . . . .95.1.  Ed25519ph, Ed25519ctx, and Ed25519  . . . . . . . . . . .95.1.1.  Modular Arithmetic  . . . . . . . . . . . . . . . . .105.1.2.  Encoding  . . . . . . . . . . . . . . . . . . . . . .105.1.3.  Decoding  . . . . . . . . . . . . . . . . . . . . . .115.1.4.  Point Addition  . . . . . . . . . . . . . . . . . . .115.1.5.  Key Generation  . . . . . . . . . . . . . . . . . . .135.1.6.  Sign  . . . . . . . . . . . . . . . . . . . . . . . .135.1.7.  Verify  . . . . . . . . . . . . . . . . . . . . . . .145.2.  Ed448ph and Ed448 . . . . . . . . . . . . . . . . . . . .155.2.1.  Modular Arithmetic  . . . . . . . . . . . . . . . . .165.2.2.  Encoding  . . . . . . . . . . . . . . . . . . . . . .165.2.3.  Decoding  . . . . . . . . . . . . . . . . . . . . . .165.2.4.  Point Addition  . . . . . . . . . . . . . . . . . . .175.2.5.  Key Generation  . . . . . . . . . . . . . . . . . . .185.2.6.  Sign  . . . . . . . . . . . . . . . . . . . . . . . .195.2.7.  Verify  . . . . . . . . . . . . . . . . . . . . . . .196.  Ed25519 Python Illustration . . . . . . . . . . . . . . . . .207.  Test Vectors  . . . . . . . . . . . . . . . . . . . . . . . .237.1.  Test Vectors for Ed25519  . . . . . . . . . . . . . . . .247.2.  Test Vectors for Ed25519ctx . . . . . . . . . . . . . . .277.3.  Test Vectors for Ed25519ph  . . . . . . . . . . . . . . .307.4.  Test Vectors for Ed448  . . . . . . . . . . . . . . . . .307.5.  Test Vectors for Ed448ph  . . . . . . . . . . . . . . . .388.  Security Considerations . . . . . . . . . . . . . . . . . . .408.1.  Side-Channel Leaks  . . . . . . . . . . . . . . . . . . .408.2.  Randomness Considerations . . . . . . . . . . . . . . . .408.3.  Use of Contexts . . . . . . . . . . . . . . . . . . . . .418.4.  Signature Malleability  . . . . . . . . . . . . . . . . .418.5.  Choice of Signature Primitive . . . . . . . . . . . . . .418.6.  Mixing Different Prehashes  . . . . . . . . . . . . . . .428.7.  Signing Large Amounts of Data at Once . . . . . . . . . .428.8.  Multiplication by Cofactor in Verification  . . . . . . .438.9.  Use of SHAKE256 as a Hash Function  . . . . . . . . . . .439.  References  . . . . . . . . . . . . . . . . . . . . . . . . .439.1.  Normative References  . . . . . . . . . . . . . . . . . .439.2.  Informative References  . . . . . . . . . . . . . . . . .44Josefsson & Liusvaara         Informational                     [Page 2]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017Appendix A.  Ed25519/Ed448 Python Library . . . . . . . . . . . .46Appendix B.  Library Driver . . . . . . . . . . . . . . . . . . .58   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .60   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .601.  Introduction   The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of   Schnorr's signature system with (possibly twisted) Edwards curves.   EdDSA needs to be instantiated with certain parameters, and this   document describes some recommended variants.   To facilitate adoption of EdDSA in the Internet community, this   document describes the signature scheme in an implementation-oriented   way and provides sample code and test vectors.   The advantages with EdDSA are as follows:   1.  EdDSA provides high performance on a variety of platforms;   2.  The use of a unique random number for each signature is not       required;   3.  It is more resilient to side-channel attacks;   4.  EdDSA uses small public keys (32 or 57 bytes) and signatures (64       or 114 bytes) for Ed25519 and Ed448, respectively;   5.  The formulas are "complete", i.e., they are valid for all points       on the curve, with no exceptions.  This obviates the need for       EdDSA to perform expensive point validation on untrusted public       values; and   6.  EdDSA provides collision resilience, meaning that hash-function       collisions do not break this system (only holds for PureEdDSA).   The original EdDSA paper [EDDSA] and the generalized version   described in "EdDSA for more curves" [EDDSA2] provide further   background.RFC 7748 [RFC7748] discusses specific curves, including   Curve25519 [CURVE25519] and Ed448-Goldilocks [ED448].   Ed25519 is intended to operate at around the 128-bit security level   and Ed448 at around the 224-bit security level.  A sufficiently large   quantum computer would be able to break both.  Reasonable projections   of the abilities of classical computers conclude that Ed25519 is   perfectly safe.  Ed448 is provided for those applications with   relaxed performance requirements and where there is a desire to hedge   against analytical attacks on elliptic curves.Josefsson & Liusvaara         Informational                     [Page 3]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20172.  Notation and Conventions   The following notation is used throughout the document:   p              Denotes the prime number defining the underlying field   GF(p)          Finite field with p elements   x^y            x multiplied by itself y times   B              Generator of the group or subgroup of interest   [n]X           X added to itself n times   h[i]           The i'th octet of octet string   h_i            The i'th bit of h   a || b         (bit-)string a concatenated with (bit-)string b   a <= b         a is less than or equal to b   a >= b         a is greater than or equal to b   i+j            Sum of i and j   i*j            Multiplication of i and j   i-j            Subtraction of j from i   i/j            Division of i by j   i x j          Cartesian product of i and j   (u,v)          Elliptic curve point with x-coordinate u and                  y-coordinate v   SHAKE256(x, y) The y first octets of SHAKE256 [FIPS202] output for                  input x   OCTET(x)       The octet with value x   OLEN(x)        The number of octets in string xJosefsson & Liusvaara         Informational                     [Page 4]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   dom2(x, y)     The blank octet string when signing or verifying                  Ed25519.  Otherwise, the octet string: "SigEd25519 no                  Ed25519 collisions" || octet(x) || octet(OLEN(y)) ||                  y, where x is in range 0-255 and y is an octet string                  of at most 255 octets.  "SigEd25519 no Ed25519                  collisions" is in ASCII (32 octets).   dom4(x, y)     The octet string "SigEd448" || octet(x) ||                  octet(OLEN(y)) || y, where x is in range 0-255 and y                  is an octet string of at most 255 octets.  "SigEd448"                  is in ASCII (8 octets).   Parentheses (i.e., '(' and ')') are used to group expressions, in   order to avoid having the description depend on a binding order   between operators.   Bit strings are converted to octet strings by taking bits from left   to right, packing those from the least significant bit of each octet   to the most significant bit, and moving to the next octet when each   octet fills up.  The conversion from octet string to bit string is   the reverse of this process; for example, the 16-bit bit string             b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15   is converted into two octets x0 and x1 (in this order) as             x0 = b7*128+b6*64+b5*32+b4*16+b3*8+b2*4+b1*2+b0             x1 = b15*128+b14*64+b13*32+b12*16+b11*8+b10*4+b9*2+b8   Little-endian encoding into bits places bits from left to right and   from least significant to most significant.  If combined with   bit-string-to-octet-string conversion defined above, this results in   little-endian encoding into octets (if length is not a multiple of 8,   the most significant bits of the last octet remain unused).   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].3.  EdDSA Algorithm   EdDSA is a digital signature system with 11 parameters.   The generic EdDSA digital signature system with its 11 input   parameters is not intended to be implemented directly.  Choosing   parameters is critical for secure and efficient operation.  Instead,   you would implement a particular parameter choice for EdDSA (such asJosefsson & Liusvaara         Informational                     [Page 5]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   Ed25519 or Ed448), sometimes slightly generalized to achieve code   reuse to cover Ed25519 and Ed448.   Therefore, a precise explanation of the generic EdDSA is thus not   particularly useful for implementers.  For background and   completeness, a succinct description of the generic EdDSA algorithm   is given here.   The definition of some parameters, such as n and c, may help to   explain some steps of the algorithm that are not intuitive.   This description closely follows [EDDSA2].   EdDSA has 11 parameters:   1.   An odd prime power p.  EdDSA uses an elliptic curve over the        finite field GF(p).   2.   An integer b with 2^(b-1) > p.  EdDSA public keys have exactly b        bits, and EdDSA signatures have exactly 2*b bits.  b is        recommended to be a multiple of 8, so public key and signature        lengths are an integral number of octets.   3.   A (b-1)-bit encoding of elements of the finite field GF(p).   4.   A cryptographic hash function H producing 2*b-bit output.        Conservative hash functions (i.e., hash functions where it is        infeasible to create collisions) are recommended and do not have        much impact on the total cost of EdDSA.   5.   An integer c that is 2 or 3.  Secret EdDSA scalars are multiples        of 2^c.  The integer c is the base-2 logarithm of the so-called        cofactor.   6.   An integer n with c <= n < b.  Secret EdDSA scalars have exactly        n + 1 bits, with the top bit (the 2^n position) always set and        the bottom c bits always cleared.   7.   A non-square element d of GF(p).  The usual recommendation is to        take it as the value nearest to zero that gives an acceptable        curve.   8.   A non-zero square element a of GF(p).  The usual recommendation        for best performance is a = -1 if p mod 4 = 1, and a = 1 if        p mod 4 = 3.   9.   An element B != (0,1) of the set E = { (x,y) is a member of        GF(p) x GF(p) such that a * x^2 + y^2 = 1 + d * x^2 * y^2 }.Josefsson & Liusvaara         Informational                     [Page 6]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   10.  An odd prime L such that [L]B = 0 and 2^c * L = #E.  The number        #E (the number of points on the curve) is part of the standard        data provided for an elliptic curve E, or it can be computed as        cofactor * order.   11.  A "prehash" function PH.  PureEdDSA means EdDSA where PH is the        identity function, i.e., PH(M) = M.  HashEdDSA means EdDSA where        PH generates a short output, no matter how long the message is;        for example, PH(M) = SHA-512(M).   Points on the curve form a group under addition, (x3, y3) = (x1, y1)   + (x2, y2), with the formulas             x1 * y2 + x2 * y1                y1 * y2 - a * x1 * x2   x3 = --------------------------,   y3 = ---------------------------         1 + d * x1 * x2 * y1 * y2          1 - d * x1 * x2 * y1 * y2   The neutral element in the group is (0,1).   Unlike many other curves used for cryptographic applications, these   formulas are "complete"; they are valid for all points on the curve,   with no exceptions.  In particular, the denominators are non-zero for   all input points.   There are more efficient formulas, which are still complete, that use   homogeneous coordinates to avoid the expensive modulo p inversions.   See [Faster-ECC] and [Edwards-revisited].3.1.  Encoding   An integer 0 < S < L - 1 is encoded in little-endian form as a b-bit   string ENC(S).   An element (x,y) of E is encoded as a b-bit string called ENC(x,y),   which is the (b-1)-bit encoding of y concatenated with one bit that   is 1 if x is negative and 0 if x is not negative.   The encoding of GF(p) is used to define "negative" elements of GF(p):   specifically, x is negative if the (b-1)-bit encoding of x is   lexicographically larger than the (b-1)-bit encoding of -x.3.2.  Keys   An EdDSA private key is a b-bit string k.  Let the hash H(k) =   (h_0, h_1, ..., h_(2b-1)) determine an integer s, which is 2^n plus   the sum of m = 2^i * h_i for all integer i, c <= i < n.  Let s   determine the multiple A = [s]B.  The EdDSA public key is ENC(A).   The bits h_b, ..., h_(2b-1) are used below during signing.Josefsson & Liusvaara         Informational                     [Page 7]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20173.3.  Sign   The EdDSA signature of a message M under a private key k is defined   as the PureEdDSA signature of PH(M).  In other words, EdDSA simply   uses PureEdDSA to sign PH(M).   The PureEdDSA signature of a message M under a private key k is the   2*b-bit string ENC(R) || ENC(S).  R and S are derived as follows.   First define r = H(h_b || ... || h_(2b-1) || M) interpreting 2*b-bit   strings in little-endian form as integers in {0, 1, ..., 2^(2*b) -   1}.  Let R = [r]B and S = (r + H(ENC(R) || ENC(A) || PH(M)) * s) mod   L.  The s used here is from the previous section.3.4.  Verify   To verify a PureEdDSA signature ENC(R) || ENC(S) on a message M under   a public key ENC(A), proceed as follows.  Parse the inputs so that A   and R are elements of E, and S is a member of the set {0, 1, ...,   L-1}.  Compute h = H(ENC(R) || ENC(A) || M), and check the group   equation [2^c * S] B = 2^c * R + [2^c * h] A in E.  The signature is   rejected if parsing fails (including S being out of range) or if the   group equation does not hold.   EdDSA verification for a message M is defined as PureEdDSA   verification for PH(M).4.  PureEdDSA, HashEdDSA, and Naming   One of the parameters of the EdDSA algorithm is the "prehash"   function.  This may be the identity function, resulting in an   algorithm called PureEdDSA, or a collision-resistant hash function   such as SHA-512, resulting in an algorithm called HashEdDSA.   Choosing which variant to use depends on which property is deemed to   be more important between 1) collision resilience and 2) a single-   pass interface for creating signatures.  The collision resilience   property means EdDSA is secure even if it is feasible to compute   collisions for the hash function.  The single-pass interface property   means that only one pass over the input message is required to create   a signature.  PureEdDSA requires two passes over the input.  Many   existing APIs, protocols, and environments assume digital signature   algorithms only need one pass over the input and may have API or   bandwidth concerns supporting anything else.   Note that single-pass verification is not possible with most uses of   signatures, no matter which signature algorithm is chosen.  This is   because most of the time, one can't process the message until the   signature is validated, which needs a pass on the entire message.Josefsson & Liusvaara         Informational                     [Page 8]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   This document specifies parameters resulting in the HashEdDSA   variants Ed25519ph and Ed448ph and the PureEdDSA variants Ed25519 and   Ed448.5.  EdDSA Instances   This section instantiates the general EdDSA algorithm for the   edwards25519 and edwards448 curves, each for the PureEdDSA and   HashEdDSA variants (plus a contextualized extension of the Ed25519   scheme).  Thus, five different parameter sets are described.5.1.  Ed25519ph, Ed25519ctx, and Ed25519   Ed25519 is EdDSA instantiated with:   +-----------+-------------------------------------------------------+   | Parameter | Value                                                 |   +-----------+-------------------------------------------------------+   |     p     | p of edwards25519 in [RFC7748] (i.e., 2^255 - 19)     |   |     b     | 256                                                   |   |  encoding | 255-bit little-endian encoding of {0, 1, ..., p-1}    |   |  of GF(p) |                                                       |   |    H(x)   | SHA-512(dom2(phflag,context)||x) [RFC6234]            |   |     c     | base 2 logarithm of cofactor of edwards25519 in       |   |           | [RFC7748] (i.e., 3)                                   |   |     n     | 254                                                   |   |     d     | d of edwards25519 in [RFC7748] (i.e., -121665/121666  |   |           | = 370957059346694393431380835087545651895421138798432 |   |           | 19016388785533085940283555)                           |   |     a     | -1                                                    |   |     B     | (X(P),Y(P)) of edwards25519 in [RFC7748] (i.e., (1511 |   |           | 22213495354007725011514095885315114540126930418572060 |   |           | 46113283949847762202, 4631683569492647816942839400347 |   |           | 5163141307993866256225615783033603165251855960))      |   |     L     | order of edwards25519 in [RFC7748] (i.e.,             |   |           | 2^252+27742317777372353535851937790883648493).        |   |   PH(x)   | x (i.e., the identity function)                       |   +-----------+-------------------------------------------------------+                      Table 1: Parameters of Ed25519   For Ed25519, dom2(f,c) is the empty string.  The phflag value is   irrelevant.  The context (if present at all) MUST be empty.  This   causes the scheme to be one and the same with the Ed25519 scheme   published earlier.   For Ed25519ctx, phflag=0.  The context input SHOULD NOT be empty.Josefsson & Liusvaara         Informational                     [Page 9]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   For Ed25519ph, phflag=1 and PH is SHA512 instead.  That is, the input   is hashed using SHA-512 before signing with Ed25519.   Value of context is set by the signer and verifier (maximum of 255   octets; the default is empty string, except for Ed25519, which can't   have context) and has to match octet by octet for verification to be   successful.   The curve used is equivalent to Curve25519 [CURVE25519], under a   change of coordinates, which means that the difficulty of the   discrete logarithm problem is the same as for Curve25519.5.1.1.  Modular Arithmetic   For advice on how to implement arithmetic modulo p = 2^255 - 19   efficiently and securely, see Curve25519 [CURVE25519].  For inversion   modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod   p).  Inverting zero should never happen, as it would require invalid   input, which would have been detected before, or would be a   calculation error.   For point decoding or "decompression", square roots modulo p are   needed.  They can be computed using the Tonelli-Shanks algorithm or   the special case for p = 5 (mod 8).  To find a square root of a,   first compute the candidate root x = a^((p+3)/8) (mod p).  Then there   are three cases:      x^2 = a (mod p).  Then x is a square root.      x^2 = -a (mod p).  Then 2^((p-1)/4) * x is a square root.      a is not a square modulo p.5.1.2.  Encoding   All values are coded as octet strings, and integers are coded using   little-endian convention, i.e., a 32-octet string h h[0],...h[31]   represents the integer h[0] + 2^8 * h[1] + ... + 2^248 * h[31].   A curve point (x,y), with coordinates in the range 0 <= x,y < p, is   coded as follows.  First, encode the y-coordinate as a little-endian   string of 32 octets.  The most significant bit of the final octet is   always zero.  To form the encoding of the point, copy the least   significant bit of the x-coordinate to the most significant bit of   the final octet.Josefsson & Liusvaara         Informational                    [Page 10]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20175.1.3.  Decoding   Decoding a point, given as a 32-octet string, is a little more   complicated.   1.  First, interpret the string as an integer in little-endian       representation.  Bit 255 of this number is the least significant       bit of the x-coordinate and denote this value x_0.  The       y-coordinate is recovered simply by clearing this bit.  If the       resulting value is >= p, decoding fails.   2.  To recover the x-coordinate, the curve equation implies       x^2 = (y^2 - 1) / (d y^2 + 1) (mod p).  The denominator is always       non-zero mod p.  Let u = y^2 - 1 and v = d y^2 + 1.  To compute       the square root of (u/v), the first step is to compute the       candidate root x = (u/v)^((p+3)/8).  This can be done with the       following trick, using a single modular powering for both the       inversion of v and the square root:                          (p+3)/8      3        (p-5)/8                 x = (u/v)        = u v  (u v^7)         (mod p)   3.  Again, there are three cases:       1.  If v x^2 = u (mod p), x is a square root.       2.  If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a           square root.       3.  Otherwise, no square root exists for modulo p, and decoding           fails.   4.  Finally, use the x_0 bit to select the right square root.  If       x = 0, and x_0 = 1, decoding fails.  Otherwise, if x_0 != x mod       2, set x <-- p - x.  Return the decoded point (x,y).5.1.4.  Point Addition   For point addition, the following method is recommended.  A point   (x,y) is represented in extended homogeneous coordinates (X, Y, Z,   T), with x = X/Z, y = Y/Z, x * y = T/Z.   The neutral point is (0,1), or equivalently in extended homogeneous   coordinates (0, Z, Z, 0) for any non-zero Z.Josefsson & Liusvaara         Informational                    [Page 11]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   The following formulas for adding two points, (x3,y3) =   (x1,y1)+(x2,y2), on twisted Edwards curves with a=-1, square a, and   non-square d are described in Section 3.1 of [Edwards-revisited] and   in [EFD-TWISTED-ADD].  They are complete, i.e., they work for any   pair of valid input points.                 A = (Y1-X1)*(Y2-X2)                 B = (Y1+X1)*(Y2+X2)                 C = T1*2*d*T2                 D = Z1*2*Z2                 E = B-A                 F = D-C                 G = D+C                 H = B+A                 X3 = E*F                 Y3 = G*H                 T3 = E*H                 Z3 = F*G   For point doubling, (x3,y3) = (x1,y1)+(x1,y1), one could just   substitute equal points in the above (because of completeness, such   substitution is valid) and observe that four multiplications turn   into squares.  However, using the formulas described in Section 3.2   of [Edwards-revisited] and in [EFD-TWISTED-DBL] saves a few smaller   operations.                 A = X1^2                 B = Y1^2                 C = 2*Z1^2                 H = A+B                 E = H-(X1+Y1)^2                 G = A-B                 F = C+G                 X3 = E*F                 Y3 = G*H                 T3 = E*H                 Z3 = F*GJosefsson & Liusvaara         Informational                    [Page 12]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20175.1.5.  Key Generation   The private key is 32 octets (256 bits, corresponding to b) of   cryptographically secure random data.  See [RFC4086] for a discussion   about randomness.   The 32-byte public key is generated by the following steps.   1.  Hash the 32-byte private key using SHA-512, storing the digest in       a 64-octet large buffer, denoted h.  Only the lower 32 bytes are       used for generating the public key.   2.  Prune the buffer: The lowest three bits of the first octet are       cleared, the highest bit of the last octet is cleared, and the       second highest bit of the last octet is set.   3.  Interpret the buffer as the little-endian integer, forming a       secret scalar s.  Perform a fixed-base scalar multiplication       [s]B.   4.  The public key A is the encoding of the point [s]B.  First,       encode the y-coordinate (in the range 0 <= y < p) as a little-       endian string of 32 octets.  The most significant bit of the       final octet is always zero.  To form the encoding of the point       [s]B, copy the least significant bit of the x coordinate to the       most significant bit of the final octet.  The result is the       public key.5.1.6.  Sign   The inputs to the signing procedure is the private key, a 32-octet   string, and a message M of arbitrary size.  For Ed25519ctx and   Ed25519ph, there is additionally a context C of at most 255 octets   and a flag F, 0 for Ed25519ctx and 1 for Ed25519ph.   1.  Hash the private key, 32 octets, using SHA-512.  Let h denote the       resulting digest.  Construct the secret scalar s from the first       half of the digest, and the corresponding public key A, as       described in the previous section.  Let prefix denote the second       half of the hash digest, h[32],...,h[63].   2.  Compute SHA-512(dom2(F, C) || prefix || PH(M)), where M is the       message to be signed.  Interpret the 64-octet digest as a little-       endian integer r.   3.  Compute the point [r]B.  For efficiency, do this by first       reducing r modulo L, the group order of B.  Let the string R be       the encoding of this point.Josefsson & Liusvaara         Informational                    [Page 13]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   4.  Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the       64-octet digest as a little-endian integer k.   5.  Compute S = (r + k * s) mod L.  For efficiency, again reduce k       modulo L first.   6.  Form the signature of the concatenation of R (32 octets) and the       little-endian encoding of S (32 octets; the three most       significant bits of the final octet are always zero).5.1.7.  Verify   1.  To verify a signature on a message M using public key A, with F       being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or       Ed25519ph is being used, C being the context, first split the       signature into two 32-octet halves.  Decode the first half as a       point R, and the second half as an integer S, in the range       0 <= s < L.  Decode the public key A as point A'.  If any of the       decodings fail (including S being out of range), the signature is       invalid.   2.  Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the       64-octet digest as a little-endian integer k.   3.  Check the group equation [8][S]B = [8]R + [8][k]A'.  It's       sufficient, but not required, to instead check [S]B = R + [k]A'.Josefsson & Liusvaara         Informational                    [Page 14]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20175.2.  Ed448ph and Ed448   Ed448 is EdDSA instantiated with:   +-----------+-------------------------------------------------------+   | Parameter | Value                                                 |   +-----------+-------------------------------------------------------+   |     p     | p of edwards448 in [RFC7748] (i.e., 2^448 - 2^224 -   |   |           | 1)                                                    |   |     b     | 456                                                   |   |  encoding | 455-bit little-endian encoding of {0, 1, ..., p-1}    |   |  of GF(p) |                                                       |   |    H(x)   | SHAKE256(dom4(phflag,context)||x, 114)                |   |   phflag  | 0                                                     |   |     c     | base 2 logarithm of cofactor of edwards448 in         |   |           | [RFC7748] (i.e., 2)                                   |   |     n     | 447                                                   |   |     d     | d of edwards448 in [RFC7748] (i.e., -39081)           |   |     a     | 1                                                     |   |     B     | (X(P),Y(P)) of edwards448 in [RFC7748] (i.e., (224580 |   |           | 04029592430018760433409989603624678964163256413424612 |   |           | 54616869504154674060329090291928693579532825780320751 |   |           | 46446173674602635247710, 2988192100784814926760179304 |   |           | 43930673437544040154080242095928241372331506189835876 |   |           | 00353687865541878473398230323350346250053154506283266 |   |           | 0))                                                   |   |     L     | order of edwards448 in [RFC7748] (i.e., 2^446 - 13818 |   |           | 06680989511535200738674851542688033669247488217860989 |   |           | 4547503885).                                          |   |   PH(x)   | x (i.e., the identity function)                       |   +-----------+-------------------------------------------------------+                       Table 2: Parameters of Ed448   Ed448ph is the same but with PH being SHAKE256(x, 64) and phflag   being 1, i.e., the input is hashed before signing with Ed448 with a   hash constant modified.   Value of context is set by signer and verifier (maximum of 255   octets; the default is empty string) and has to match octet by octet   for verification to be successful.   The curve is equivalent to Ed448-Goldilocks under change of the   basepoint, which preserves difficulty of the discrete logarithm.Josefsson & Liusvaara         Informational                    [Page 15]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20175.2.1.  Modular Arithmetic   For advice on how to implement arithmetic modulo p = 2^448 - 2^224 -   1 efficiently and securely, see [ED448].  For inversion modulo p, it   is recommended to use the identity x^-1 = x^(p-2) (mod p).  Inverting   zero should never happen, as it would require invalid input, which   would have been detected before, or would be a calculation error.   For point decoding or "decompression", square roots modulo p are   needed.  They can be computed by first computing candidate root   x = a ^ (p+1)/4 (mod p) and then checking if x^2 = a.  If it is, then   x is the square root of a; if it isn't, then a does not have a square   root.5.2.2.  Encoding   All values are coded as octet strings, and integers are coded using   little-endian convention, i.e., a 57-octet string h h[0],...h[56]   represents the integer h[0] + 2^8 * h[1] + ... + 2^448 * h[56].   A curve point (x,y), with coordinates in the range 0 <= x,y < p, is   coded as follows.  First, encode the y-coordinate as a little-endian   string of 57 octets.  The final octet is always zero.  To form the   encoding of the point, copy the least significant bit of the   x-coordinate to the most significant bit of the final octet.5.2.3.  Decoding   Decoding a point, given as a 57-octet string, is a little more   complicated.   1.  First, interpret the string as an integer in little-endian       representation.  Bit 455 of this number is the least significant       bit of the x-coordinate, and denote this value x_0.  The       y-coordinate is recovered simply by clearing this bit.  If the       resulting value is >= p, decoding fails.   2.  To recover the x-coordinate, the curve equation implies       x^2 = (y^2 - 1) / (d y^2 - 1) (mod p).  The denominator is always       non-zero mod p.  Let u = y^2 - 1 and v = d y^2 - 1.  To compute       the square root of (u/v), the first step is to compute the       candidate root x = (u/v)^((p+1)/4).  This can be done using the       following trick, to use a single modular powering for both the       inversion of v and the square root:                          (p+1)/4    3            (p-3)/4                 x = (u/v)        = u  v (u^5 v^3)         (mod p)Josefsson & Liusvaara         Informational                    [Page 16]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   3.  If v * x^2 = u, the recovered x-coordinate is x.  Otherwise, no       square root exists, and the decoding fails.   4.  Finally, use the x_0 bit to select the right square root.  If       x = 0, and x_0 = 1, decoding fails.  Otherwise, if x_0 != x mod       2, set x <-- p - x.  Return the decoded point (x,y).5.2.4.  Point Addition   For point addition, the following method is recommended.  A point   (x,y) is represented in projective coordinates (X, Y, Z), with   x = X/Z, y = Y/Z.   The neutral point is (0,1), or equivalently in projective coordinates   (0, Z, Z) for any non-zero Z.   The following formulas for adding two points, (x3,y3) =   (x1,y1)+(x2,y2) on untwisted Edwards curve (i.e., a=1) with non-   square d, are described in Section 4 of [Faster-ECC] and in   [EFD-ADD].  They are complete, i.e., they work for any pair of valid   input points.                 A = Z1*Z2                 B = A^2                 C = X1*X2                 D = Y1*Y2                 E = d*C*D                 F = B-E                 G = B+E                 H = (X1+Y1)*(X2+Y2)                 X3 = A*F*(H-C-D)                 Y3 = A*G*(D-C)                 Z3 = F*GJosefsson & Liusvaara         Informational                    [Page 17]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   Again, similar to the other curve, doubling formulas can be obtained   by substituting equal points, turning four multiplications into   squares.  However, this is not even nearly optimal; the following   formulas described in Section 4 of [Faster-ECC] and in [EFD-DBL] save   multiple multiplications.                 B = (X1+Y1)^2                 C = X1^2                 D = Y1^2                 E = C+D                 H = Z1^2                 J = E-2*H                 X3 = (B-E)*J                 Y3 = E*(C-D)                 Z3 = E*J5.2.5.  Key Generation   The private key is 57 octets (456 bits, corresponding to b) of   cryptographically secure random data.  See [RFC4086] for a discussion   about randomness.   The 57-byte public key is generated by the following steps:   1.  Hash the 57-byte private key using SHAKE256(x, 114), storing the       digest in a 114-octet large buffer, denoted h.  Only the lower 57       bytes are used for generating the public key.   2.  Prune the buffer: The two least significant bits of the first       octet are cleared, all eight bits the last octet are cleared, and       the highest bit of the second to last octet is set.   3.  Interpret the buffer as the little-endian integer, forming a       secret scalar s.  Perform a known-base-point scalar       multiplication [s]B.   4.  The public key A is the encoding of the point [s]B.  First encode       the y-coordinate (in the range 0 <= y < p) as a little-endian       string of 57 octets.  The most significant bit of the final octet       is always zero.  To form the encoding of the point [s]B, copy the       least significant bit of the x coordinate to the most significant       bit of the final octet.  The result is the public key.Josefsson & Liusvaara         Informational                    [Page 18]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20175.2.6.  Sign   The inputs to the signing procedure is the private key, a 57-octet   string, a flag F, which is 0 for Ed448, 1 for Ed448ph, context C of   at most 255 octets, and a message M of arbitrary size.   1.  Hash the private key, 57 octets, using SHAKE256(x, 114).  Let h       denote the resulting digest.  Construct the secret scalar s from       the first half of the digest, and the corresponding public key A,       as described in the previous section.  Let prefix denote the       second half of the hash digest, h[57],...,h[113].   2.  Compute SHAKE256(dom4(F, C) || prefix || PH(M), 114), where M is       the message to be signed, F is 1 for Ed448ph, 0 for Ed448, and C       is the context to use.  Interpret the 114-octet digest as a       little-endian integer r.   3.  Compute the point [r]B.  For efficiency, do this by first       reducing r modulo L, the group order of B.  Let the string R be       the encoding of this point.   4.  Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114), and       interpret the 114-octet digest as a little-endian integer k.   5.  Compute S = (r + k * s) mod L.  For efficiency, again reduce k       modulo L first.   6.  Form the signature of the concatenation of R (57 octets) and the       little-endian encoding of S (57 octets; the ten most significant       bits of the final octets are always zero).5.2.7.  Verify   1.  To verify a signature on a message M using context C and public       key A, with F being 0 for Ed448 and 1 for Ed448ph, first split       the signature into two 57-octet halves.  Decode the first half as       a point R, and the second half as an integer S, in the range 0 <=       s < L.  Decode the public key A as point A'.  If any of the       decodings fail (including S being out of range), the signature is       invalid.   2.  Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114), and       interpret the 114-octet digest as a little-endian integer k.   3.  Check the group equation [4][S]B = [4]R + [4][k]A'.  It's       sufficient, but not required, to instead check [S]B = R + [k]A'.Josefsson & Liusvaara         Informational                    [Page 19]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20176.  Ed25519 Python Illustration   The rest of this section describes how Ed25519 can be implemented in   Python (version 3.2 or later) for illustration.  SeeAppendix A for   the complete implementation andAppendix B for a test-driver to run   it through some test vectors.   Note that this code is not intended for production as it is not   proven to be correct for all inputs, nor does it protect against   side-channel attacks.  The purpose is to illustrate the algorithm to   help implementers with their own implementation.## First, some preliminaries that will be needed.import hashlibdef sha512(s):    return hashlib.sha512(s).digest()# Base field Z_pp = 2**255 - 19def modp_inv(x):    return pow(x, p-2, p)# Curve constantd = -121665 * modp_inv(121666) % p# Group orderq = 2**252 + 27742317777372353535851937790883648493def sha512_modq(s):    return int.from_bytes(sha512(s), "little") % q## Then follows functions to perform point operations.# Points are represented as tuples (X, Y, Z, T) of extended# coordinates, with x = X/Z, y = Y/Z, x*y = T/Zdef point_add(P, Q):    A, B = (P[1]-P[0]) * (Q[1]-Q[0]) % p, (P[1]+P[0]) * (Q[1]+Q[0]) % p;    C, D = 2 * P[3] * Q[3] * d % p, 2 * P[2] * Q[2] % p;    E, F, G, H = B-A, D-C, D+C, B+A;    return (E*F, G*H, F*G, E*H);Josefsson & Liusvaara         Informational                    [Page 20]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017# Computes Q = s * Qdef point_mul(s, P):    Q = (0, 1, 1, 0)  # Neutral element    while s > 0:        if s & 1:            Q = point_add(Q, P)        P = point_add(P, P)        s >>= 1    return Qdef point_equal(P, Q):    # x1 / z1 == x2 / z2  <==>  x1 * z2 == x2 * z1    if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:        return False    if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:        return False    return True## Now follows functions for point compression.# Square root of -1modp_sqrt_m1 = pow(2, (p-1) // 4, p)# Compute corresponding x-coordinate, with low bit corresponding to# sign, or return None on failuredef recover_x(y, sign):    if y >= p:        return None    x2 = (y*y-1) * modp_inv(d*y*y+1)    if x2 == 0:        if sign:            return None        else:            return 0    # Compute square root of x2    x = pow(x2, (p+3) // 8, p)    if (x*x - x2) % p != 0:        x = x * modp_sqrt_m1 % p    if (x*x - x2) % p != 0:        return None    if (x & 1) != sign:        x = p - x    return xJosefsson & Liusvaara         Informational                    [Page 21]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017# Base pointg_y = 4 * modp_inv(5) % pg_x = recover_x(g_y, 0)G = (g_x, g_y, 1, g_x * g_y % p)def point_compress(P):    zinv = modp_inv(P[2])    x = P[0] * zinv % p    y = P[1] * zinv % p    return int.to_bytes(y | ((x & 1) << 255), 32, "little")def point_decompress(s):    if len(s) != 32:        raise Exception("Invalid input length for decompression")    y = int.from_bytes(s, "little")    sign = y >> 255    y &= (1 << 255) - 1    x = recover_x(y, sign)    if x is None:        return None    else:        return (x, y, 1, x*y % p)## These are functions for manipulating the private key.def secret_expand(secret):    if len(secret) != 32:        raise Exception("Bad size of private key")    h = sha512(secret)    a = int.from_bytes(h[:32], "little")    a &= (1 << 254) - 8    a |= (1 << 254)    return (a, h[32:])def secret_to_public(secret):    (a, dummy) = secret_expand(secret)    return point_compress(point_mul(a, G))Josefsson & Liusvaara         Informational                    [Page 22]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017## The signature function works as below.def sign(secret, msg):    a, prefix = secret_expand(secret)    A = point_compress(point_mul(a, G))    r = sha512_modq(prefix + msg)    R = point_mul(r, G)    Rs = point_compress(R)    h = sha512_modq(Rs + A + msg)    s = (r + h * a) % q    return Rs + int.to_bytes(s, 32, "little")## And finally the verification function.def verify(public, msg, signature):    if len(public) != 32:        raise Exception("Bad public key length")    if len(signature) != 64:        Exception("Bad signature length")    A = point_decompress(public)    if not A:        return False    Rs = signature[:32]    R = point_decompress(Rs)    if not R:        return False    s = int.from_bytes(signature[32:], "little")    if s >= q: return False    h = sha512_modq(Rs + public + msg)    sB = point_mul(s, G)    hA = point_mul(h, A)    return point_equal(sB, point_add(R, hA))7.  Test Vectors   This section contains test vectors for Ed25519ph, Ed25519ctx,   Ed448ph, Ed25519, and Ed448.   Each section contains a sequence of test vectors.  The octets are hex   encoded, and whitespace is inserted for readability.  Ed25519,   Ed25519ctx, and Ed25519ph private and public keys are 32 octets;   signatures are 64 octets.  Ed448 and Ed448ph private and public keys   are 57 octets; signatures are 114 octets.  Messages are of arbitrary   length.  If the context is non-empty, it is given as 1-255 octets.Josefsson & Liusvaara         Informational                    [Page 23]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20177.1.  Test Vectors for Ed25519   These test vectors are taken from [ED25519-TEST-VECTORS] (but we   removed the public key as a suffix of the private key and removed the   message from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].   -----TEST 1   ALGORITHM:   Ed25519   SECRET KEY:   9d61b19deffd5a60ba844af492ec2cc4   4449c5697b326919703bac031cae7f60   PUBLIC KEY:   d75a980182b10ab7d54bfed3c964073a   0ee172f3daa62325af021a68f707511a   MESSAGE (length 0 bytes):   SIGNATURE:   e5564300c360ac729086e2cc806e828a   84877f1eb8e5d974d873e06522490155   5fb8821590a33bacc61e39701cf9b46b   d25bf5f0595bbe24655141438e7a100b   -----TEST 2   ALGORITHM:   Ed25519   SECRET KEY:   4ccd089b28ff96da9db6c346ec114e0f   5b8a319f35aba624da8cf6ed4fb8a6fb   PUBLIC KEY:   3d4017c3e843895a92b70aa74d1b7ebc   9c982ccf2ec4968cc0cd55f12af4660c   MESSAGE (length 1 byte):   72   SIGNATURE:   92a009a9f0d4cab8720e820b5f642540   a2b27b5416503f8fb3762223ebdb69da   085ac1e43e15996e458f3613d0f11d8c   387b2eaeb4302aeeb00d291612bb0c00Josefsson & Liusvaara         Informational                    [Page 24]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   -----TEST 3   ALGORITHM:   Ed25519   SECRET KEY:   c5aa8df43f9f837bedb7442f31dcb7b1   66d38535076f094b85ce3a2e0b4458f7   PUBLIC KEY:   fc51cd8e6218a1a38da47ed00230f058   0816ed13ba3303ac5deb911548908025   MESSAGE (length 2 bytes):   af82   SIGNATURE:   6291d657deec24024827e69c3abe01a3   0ce548a284743a445e3680d7db5ac3ac   18ff9b538d16f290ae67f760984dc659   4a7c15e9716ed28dc027beceea1ec40a   -----TEST 1024   ALGORITHM:   Ed25519   SECRET KEY:   f5e5767cf153319517630f226876b86c   8160cc583bc013744c6bf255f5cc0ee5   PUBLIC KEY:   278117fc144c72340f67d0f2316e8386   ceffbf2b2428c9c51fef7c597f1d426e   MESSAGE (length 1023 bytes):   08b8b2b733424243760fe426a4b54908   632110a66c2f6591eabd3345e3e4eb98   fa6e264bf09efe12ee50f8f54e9f77b1   e355f6c50544e23fb1433ddf73be84d8   79de7c0046dc4996d9e773f4bc9efe57   38829adb26c81b37c93a1b270b20329d   658675fc6ea534e0810a4432826bf58c   941efb65d57a338bbd2e26640f89ffbc   1a858efcb8550ee3a5e1998bd177e93a   7363c344fe6b199ee5d02e82d522c4fe   ba15452f80288a821a579116ec6dad2b   3b310da903401aa62100ab5d1a36553eJosefsson & Liusvaara         Informational                    [Page 25]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   06203b33890cc9b832f79ef80560ccb9   a39ce767967ed628c6ad573cb116dbef   efd75499da96bd68a8a97b928a8bbc10   3b6621fcde2beca1231d206be6cd9ec7   aff6f6c94fcd7204ed3455c68c83f4a4   1da4af2b74ef5c53f1d8ac70bdcb7ed1   85ce81bd84359d44254d95629e9855a9   4a7c1958d1f8ada5d0532ed8a5aa3fb2   d17ba70eb6248e594e1a2297acbbb39d   502f1a8c6eb6f1ce22b3de1a1f40cc24   554119a831a9aad6079cad88425de6bd   e1a9187ebb6092cf67bf2b13fd65f270   88d78b7e883c8759d2c4f5c65adb7553   878ad575f9fad878e80a0c9ba63bcbcc   2732e69485bbc9c90bfbd62481d9089b   eccf80cfe2df16a2cf65bd92dd597b07   07e0917af48bbb75fed413d238f5555a   7a569d80c3414a8d0859dc65a46128ba   b27af87a71314f318c782b23ebfe808b   82b0ce26401d2e22f04d83d1255dc51a   ddd3b75a2b1ae0784504df543af8969b   e3ea7082ff7fc9888c144da2af58429e   c96031dbcad3dad9af0dcbaaaf268cb8   fcffead94f3c7ca495e056a9b47acdb7   51fb73e666c6c655ade8297297d07ad1   ba5e43f1bca32301651339e22904cc8c   42f58c30c04aafdb038dda0847dd988d   cda6f3bfd15c4b4c4525004aa06eeff8   ca61783aacec57fb3d1f92b0fe2fd1a8   5f6724517b65e614ad6808d6f6ee34df   f7310fdc82aebfd904b01e1dc54b2927   094b2db68d6f903b68401adebf5a7e08   d78ff4ef5d63653a65040cf9bfd4aca7   984a74d37145986780fc0b16ac451649   de6188a7dbdf191f64b5fc5e2ab47b57   f7f7276cd419c17a3ca8e1b939ae49e4   88acba6b965610b5480109c8b17b80e1   b7b750dfc7598d5d5011fd2dcc5600a3   2ef5b52a1ecc820e308aa342721aac09   43bf6686b64b2579376504ccc493d97e   6aed3fb0f9cd71a43dd497f01f17c0e2   cb3797aa2a2f256656168e6c496afc5f   b93246f6b1116398a346f1a641f3b041   e989f7914f90cc2c7fff357876e506b5   0d334ba77c225bc307ba537152f3f161   0e4eafe595f6d9d90d11faa933a15ef1   369546868a7f3a45a96768d40fd9d034   12c091c6315cf4fde7cb68606937380dJosefsson & Liusvaara         Informational                    [Page 26]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   b2eaaa707b4c4185c32eddcdd306705e   4dc1ffc872eeee475a64dfac86aba41c   0618983f8741c5ef68d3a101e8a3b8ca   c60c905c15fc910840b94c00a0b9d0   SIGNATURE:   0aab4c900501b3e24d7cdf4663326a3a   87df5e4843b2cbdb67cbf6e460fec350   aa5371b1508f9f4528ecea23c436d94b   5e8fcd4f681e30a6ac00a9704a188a03   -----TEST SHA(abc)   ALGORITHM:   Ed25519   SECRET KEY:   833fe62409237b9d62ec77587520911e   9a759cec1d19755b7da901b96dca3d42   PUBLIC KEY:   ec172b93ad5e563bf4932c70e1245034   c35467ef2efd4d64ebf819683467e2bf   MESSAGE (length 64 bytes):   ddaf35a193617abacc417349ae204131   12e6fa4e89a97ea20a9eeee64b55d39a   2192992a274fc1a836ba3c23a3feebbd   454d4423643ce80e2a9ac94fa54ca49f   SIGNATURE:   dc2a4459e7369633a52b1bf277839a00   201009a3efbf3ecb69bea2186c26b589   09351fc9ac90b3ecfdfbc7c66431e030   3dca179c138ac17ad9bef1177331a704   -----7.2.  Test Vectors for Ed25519ctx   -----foo   ALGORITHM:   Ed25519ctx   SECRET KEY:   0305334e381af78f141cb666f6199f57   bc3495335a256a95bd2a55bf546663f6Josefsson & Liusvaara         Informational                    [Page 27]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   PUBLIC KEY:   dfc9425e4f968f7f0c29f0259cf5f9ae   d6851c2bb4ad8bfb860cfee0ab248292   MESSAGE (length 16 bytes):   f726936d19c800494e3fdaff20b276a8   CONTEXT:   666f6f   SIGNATURE:   55a4cc2f70a54e04288c5f4cd1e45a7b   b520b36292911876cada7323198dd87a   8b36950b95130022907a7fb7c4e9b2d5   f6cca685a587b4b21f4b888e4e7edb0d   -----bar   ALGORITHM:   Ed25519ctx   SECRET KEY:   0305334e381af78f141cb666f6199f57   bc3495335a256a95bd2a55bf546663f6   PUBLIC KEY:   dfc9425e4f968f7f0c29f0259cf5f9ae   d6851c2bb4ad8bfb860cfee0ab248292   MESSAGE (length 16 bytes):   f726936d19c800494e3fdaff20b276a8   CONTEXT:   626172   SIGNATURE:   fc60d5872fc46b3aa69f8b5b4351d580   8f92bcc044606db097abab6dbcb1aee3   216c48e8b3b66431b5b186d1d28f8ee1   5a5ca2df6668346291c2043d4eb3e90d   -----foo2   ALGORITHM:   Ed25519ctxJosefsson & Liusvaara         Informational                    [Page 28]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SECRET KEY:   0305334e381af78f141cb666f6199f57   bc3495335a256a95bd2a55bf546663f6   PUBLIC KEY:   dfc9425e4f968f7f0c29f0259cf5f9ae   d6851c2bb4ad8bfb860cfee0ab248292   MESSAGE (length 16 bytes):   508e9e6882b979fea900f62adceaca35   CONTEXT:   666f6f   SIGNATURE:   8b70c1cc8310e1de20ac53ce28ae6e72   07f33c3295e03bb5c0732a1d20dc6490   8922a8b052cf99b7c4fe107a5abb5b2c   4085ae75890d02df26269d8945f84b0b   -----foo3   ALGORITHM:   Ed25519ctx   SECRET KEY:   ab9c2853ce297ddab85c993b3ae14bca   d39b2c682beabc27d6d4eb20711d6560   PUBLIC KEY:   0f1d1274943b91415889152e893d80e9   3275a1fc0b65fd71b4b0dda10ad7d772   MESSAGE (length 16 bytes):   f726936d19c800494e3fdaff20b276a8   CONTEXT:   666f6f   SIGNATURE:   21655b5f1aa965996b3f97b3c849eafb   a922a0a62992f73b3d1b73106a84ad85   e9b86a7b6005ea868337ff2d20a7f5fb   d4cd10b0be49a68da2b2e0dc0ad8960f   -----Josefsson & Liusvaara         Informational                    [Page 29]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20177.3.  Test Vectors for Ed25519ph   -----TEST abc   ALGORITHM:   Ed25519ph   SECRET KEY:   833fe62409237b9d62ec77587520911e   9a759cec1d19755b7da901b96dca3d42   PUBLIC KEY:   ec172b93ad5e563bf4932c70e1245034   c35467ef2efd4d64ebf819683467e2bf   MESSAGE (length 3 bytes):   616263   SIGNATURE:   98a70222f0b8121aa9d30f813d683f80   9e462b469c7ff87639499bb94e6dae41   31f85042463c2a355a2003d062adf5aa   a10b8c61e636062aaad11c2a26083406   -----7.4.  Test Vectors for Ed448   -----Blank   ALGORITHM:   Ed448   SECRET KEY:   6c82a562cb808d10d632be89c8513ebf   6c929f34ddfa8c9f63c9960ef6e348a3   528c8a3fcc2f044e39a3fc5b94492f8f   032e7549a20098f95b   PUBLIC KEY:   5fd7449b59b461fd2ce787ec616ad46a   1da1342485a70e1f8a0ea75d80e96778   edf124769b46c7061bd6783df1e50f6c   d1fa1abeafe8256180   MESSAGE (length 0 bytes):Josefsson & Liusvaara         Informational                    [Page 30]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SIGNATURE:   533a37f6bbe457251f023c0d88f976ae   2dfb504a843e34d2074fd823d41a591f   2b233f034f628281f2fd7a22ddd47d78   28c59bd0a21bfd3980ff0d2028d4b18a   9df63e006c5d1c2d345b925d8dc00b41   04852db99ac5c7cdda8530a113a0f4db   b61149f05a7363268c71d95808ff2e65   2600   -----1 octet   ALGORITHM:   Ed448   SECRET KEY:   c4eab05d357007c632f3dbb48489924d   552b08fe0c353a0d4a1f00acda2c463a   fbea67c5e8d2877c5e3bc397a659949e   f8021e954e0a12274e   PUBLIC KEY:   43ba28f430cdff456ae531545f7ecd0a   c834a55d9358c0372bfa0c6c6798c086   6aea01eb00742802b8438ea4cb82169c   235160627b4c3a9480   MESSAGE (length 1 byte):   03   SIGNATURE:   26b8f91727bd62897af15e41eb43c377   efb9c610d48f2335cb0bd0087810f435   2541b143c4b981b7e18f62de8ccdf633   fc1bf037ab7cd779805e0dbcc0aae1cb   cee1afb2e027df36bc04dcecbf154336   c19f0af7e0a6472905e799f1953d2a0f   f3348ab21aa4adafd1d234441cf807c0   3a00   -----1 octet (with context)   ALGORITHM:   Ed448Josefsson & Liusvaara         Informational                    [Page 31]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SECRET KEY:   c4eab05d357007c632f3dbb48489924d   552b08fe0c353a0d4a1f00acda2c463a   fbea67c5e8d2877c5e3bc397a659949e   f8021e954e0a12274e   PUBLIC KEY:   43ba28f430cdff456ae531545f7ecd0a   c834a55d9358c0372bfa0c6c6798c086   6aea01eb00742802b8438ea4cb82169c   235160627b4c3a9480   MESSAGE (length 1 byte):   03   CONTEXT:   666f6f   SIGNATURE:   d4f8f6131770dd46f40867d6fd5d5055   de43541f8c5e35abbcd001b32a89f7d2   151f7647f11d8ca2ae279fb842d60721   7fce6e042f6815ea000c85741de5c8da   1144a6a1aba7f96de42505d7a7298524   fda538fccbbb754f578c1cad10d54d0d   5428407e85dcbc98a49155c13764e66c   3c00   -----11 octets   ALGORITHM:   Ed448   SECRET KEY:   cd23d24f714274e744343237b93290f5   11f6425f98e64459ff203e8985083ffd   f60500553abc0e05cd02184bdb89c4cc   d67e187951267eb328   PUBLIC KEY:   dcea9e78f35a1bf3499a831b10b86c90   aac01cd84b67a0109b55a36e9328b1e3   65fce161d71ce7131a543ea4cb5f7e9f   1d8b00696447001400   MESSAGE (length 11 bytes):   0c3e544074ec63b0265e0cJosefsson & Liusvaara         Informational                    [Page 32]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SIGNATURE:   1f0a8888ce25e8d458a21130879b840a   9089d999aaba039eaf3e3afa090a09d3   89dba82c4ff2ae8ac5cdfb7c55e94d5d   961a29fe0109941e00b8dbdeea6d3b05   1068df7254c0cdc129cbe62db2dc957d   bb47b51fd3f213fb8698f064774250a5   028961c9bf8ffd973fe5d5c206492b14   0e00   -----12 octets   ALGORITHM:   Ed448   SECRET KEY:   258cdd4ada32ed9c9ff54e63756ae582   fb8fab2ac721f2c8e676a72768513d93   9f63dddb55609133f29adf86ec9929dc   cb52c1c5fd2ff7e21b   PUBLIC KEY:   3ba16da0c6f2cc1f30187740756f5e79   8d6bc5fc015d7c63cc9510ee3fd44adc   24d8e968b6e46e6f94d19b945361726b   d75e149ef09817f580   MESSAGE (length 12 bytes):   64a65f3cdedcdd66811e2915   SIGNATURE:   7eeeab7c4e50fb799b418ee5e3197ff6   bf15d43a14c34389b59dd1a7b1b85b4a   e90438aca634bea45e3a2695f1270f07   fdcdf7c62b8efeaf00b45c2c96ba457e   b1a8bf075a3db28e5c24f6b923ed4ad7   47c3c9e03c7079efb87cb110d3a99861   e72003cbae6d6b8b827e4e6c143064ff   3c00   -----13 octets   ALGORITHM:   Ed448Josefsson & Liusvaara         Informational                    [Page 33]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SECRET KEY:   7ef4e84544236752fbb56b8f31a23a10   e42814f5f55ca037cdcc11c64c9a3b29   49c1bb60700314611732a6c2fea98eeb   c0266a11a93970100e   PUBLIC KEY:   b3da079b0aa493a5772029f0467baebe   e5a8112d9d3a22532361da294f7bb381   5c5dc59e176b4d9f381ca0938e13c6c0   7b174be65dfa578e80   MESSAGE (length 13 bytes):   64a65f3cdedcdd66811e2915e7   SIGNATURE:   6a12066f55331b6c22acd5d5bfc5d712   28fbda80ae8dec26bdd306743c5027cb   4890810c162c027468675ecf645a8317   6c0d7323a2ccde2d80efe5a1268e8aca   1d6fbc194d3f77c44986eb4ab4177919   ad8bec33eb47bbb5fc6e28196fd1caf5   6b4e7e0ba5519234d047155ac727a105   3100   -----64 octets   ALGORITHM:   Ed448   SECRET KEY:   d65df341ad13e008567688baedda8e9d   cdc17dc024974ea5b4227b6530e339bf   f21f99e68ca6968f3cca6dfe0fb9f4fa   b4fa135d5542ea3f01   PUBLIC KEY:   df9705f58edbab802c7f8363cfe5560a   b1c6132c20a9f1dd163483a26f8ac53a   39d6808bf4a1dfbd261b099bb03b3fb5   0906cb28bd8a081f00   MESSAGE (length 64 bytes):   bd0f6a3747cd561bdddf4640a332461a   4a30a12a434cd0bf40d766d9c6d458e5   512204a30c17d1f50b5079631f64eb31   12182da3005835461113718d1a5ef944Josefsson & Liusvaara         Informational                    [Page 34]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SIGNATURE:   554bc2480860b49eab8532d2a533b7d5   78ef473eeb58c98bb2d0e1ce488a98b1   8dfde9b9b90775e67f47d4a1c3482058   efc9f40d2ca033a0801b63d45b3b722e   f552bad3b4ccb667da350192b61c508c   f7b6b5adadc2c8d9a446ef003fb05cba   5f30e88e36ec2703b349ca229c267083   3900   -----256 octets   ALGORITHM:   Ed448   SECRET KEY:   2ec5fe3c17045abdb136a5e6a913e32a   b75ae68b53d2fc149b77e504132d3756   9b7e766ba74a19bd6162343a21c8590a   a9cebca9014c636df5   PUBLIC KEY:   79756f014dcfe2079f5dd9e718be4171   e2ef2486a08f25186f6bff43a9936b9b   fe12402b08ae65798a3d81e22e9ec80e   7690862ef3d4ed3a00   MESSAGE (length 256 bytes):   15777532b0bdd0d1389f636c5f6b9ba7   34c90af572877e2d272dd078aa1e567c   fa80e12928bb542330e8409f31745041   07ecd5efac61ae7504dabe2a602ede89   e5cca6257a7c77e27a702b3ae39fc769   fc54f2395ae6a1178cab4738e543072f   c1c177fe71e92e25bf03e4ecb72f47b6   4d0465aaea4c7fad372536c8ba516a60   39c3c2a39f0e4d832be432dfa9a706a6   e5c7e19f397964ca4258002f7c0541b5   90316dbc5622b6b2a6fe7a4abffd9610   5eca76ea7b98816af0748c10df048ce0   12d901015a51f189f3888145c03650aa   23ce894c3bd889e030d565071c59f409   a9981b51878fd6fc110624dcbcde0bf7   a69ccce38fabdf86f3bef6044819de11Josefsson & Liusvaara         Informational                    [Page 35]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SIGNATURE:   c650ddbb0601c19ca11439e1640dd931   f43c518ea5bea70d3dcde5f4191fe53f   00cf966546b72bcc7d58be2b9badef28   743954e3a44a23f880e8d4f1cfce2d7a   61452d26da05896f0a50da66a239a8a1   88b6d825b3305ad77b73fbac0836ecc6   0987fd08527c1a8e80d5823e65cafe2a   3d00   -----1023 octets   ALGORITHM:   Ed448   SECRET KEY:   872d093780f5d3730df7c212664b37b8   a0f24f56810daa8382cd4fa3f77634ec   44dc54f1c2ed9bea86fafb7632d8be19   9ea165f5ad55dd9ce8   PUBLIC KEY:   a81b2e8a70a5ac94ffdbcc9badfc3feb   0801f258578bb114ad44ece1ec0e799d   a08effb81c5d685c0c56f64eecaef8cd   f11cc38737838cf400   MESSAGE (length 1023 bytes):   6ddf802e1aae4986935f7f981ba3f035   1d6273c0a0c22c9c0e8339168e675412   a3debfaf435ed651558007db4384b650   fcc07e3b586a27a4f7a00ac8a6fec2cd   86ae4bf1570c41e6a40c931db27b2faa   15a8cedd52cff7362c4e6e23daec0fbc   3a79b6806e316efcc7b68119bf46bc76   a26067a53f296dafdbdc11c77f7777e9   72660cf4b6a9b369a6665f02e0cc9b6e   dfad136b4fabe723d2813db3136cfde9   b6d044322fee2947952e031b73ab5c60   3349b307bdc27bc6cb8b8bbd7bd32321   9b8033a581b59eadebb09b3c4f3d2277   d4f0343624acc817804728b25ab79717   2b4c5c21a22f9c7839d64300232eb66e   53f31c723fa37fe387c7d3e50bdf9813   a30e5bb12cf4cd930c40cfb4e1fc6225   92a49588794494d56d24ea4b40c89fc0   596cc9ebb961c8cb10adde976a5d602b   1c3f85b9b9a001ed3c6a4d3b1437f520Josefsson & Liusvaara         Informational                    [Page 36]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   96cd1956d042a597d561a596ecd3d173   5a8d570ea0ec27225a2c4aaff26306d1   526c1af3ca6d9cf5a2c98f47e1c46db9   a33234cfd4d81f2c98538a09ebe76998   d0d8fd25997c7d255c6d66ece6fa56f1   1144950f027795e653008f4bd7ca2dee   85d8e90f3dc315130ce2a00375a318c7   c3d97be2c8ce5b6db41a6254ff264fa6   155baee3b0773c0f497c573f19bb4f42   40281f0b1f4f7be857a4e59d416c06b4   c50fa09e1810ddc6b1467baeac5a3668   d11b6ecaa901440016f389f80acc4db9   77025e7f5924388c7e340a732e554440   e76570f8dd71b7d640b3450d1fd5f041   0a18f9a3494f707c717b79b4bf75c984   00b096b21653b5d217cf3565c9597456   f70703497a078763829bc01bb1cbc8fa   04eadc9a6e3f6699587a9e75c94e5bab   0036e0b2e711392cff0047d0d6b05bd2   a588bc109718954259f1d86678a579a3   120f19cfb2963f177aeb70f2d4844826   262e51b80271272068ef5b3856fa8535   aa2a88b2d41f2a0e2fda7624c2850272   ac4a2f561f8f2f7a318bfd5caf969614   9e4ac824ad3460538fdc25421beec2cc   6818162d06bbed0c40a387192349db67   a118bada6cd5ab0140ee273204f628aa   d1c135f770279a651e24d8c14d75a605   9d76b96a6fd857def5e0b354b27ab937   a5815d16b5fae407ff18222c6d1ed263   be68c95f32d908bd895cd76207ae7264   87567f9a67dad79abec316f683b17f2d   02bf07e0ac8b5bc6162cf94697b3c27c   d1fea49b27f23ba2901871962506520c   392da8b6ad0d99f7013fbc06c2c17a56   9500c8a7696481c1cd33e9b14e40b82e   79a5f5db82571ba97bae3ad3e0479515   bb0e2b0f3bfcd1fd33034efc6245eddd   7ee2086ddae2600d8ca73e214e8c2b0b   db2b047c6a464a562ed77b73d2d841c4   b34973551257713b753632efba348169   abc90a68f42611a40126d7cb21b58695   568186f7e569d2ff0f9e745d0487dd2e   b997cafc5abf9dd102e62ff66cba87Josefsson & Liusvaara         Informational                    [Page 37]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   SIGNATURE:   e301345a41a39a4d72fff8df69c98075   a0cc082b802fc9b2b6bc503f926b65bd   df7f4c8f1cb49f6396afc8a70abe6d8a   ef0db478d4c6b2970076c6a0484fe76d   76b3a97625d79f1ce240e7c576750d29   5528286f719b413de9ada3e8eb78ed57   3603ce30d8bb761785dc30dbc320869e   1a00   -----7.5.  Test Vectors for Ed448ph   -----TEST abc   ALGORITHM:   Ed448ph   SECRET KEY:   833fe62409237b9d62ec77587520911e   9a759cec1d19755b7da901b96dca3d42   ef7822e0d5104127dc05d6dbefde69e3   ab2cec7c867c6e2c49   PUBLIC KEY:   259b71c19f83ef77a7abd26524cbdb31   61b590a48f7d17de3ee0ba9c52beb743   c09428a131d6b1b57303d90d8132c276   d5ed3d5d01c0f53880   MESSAGE (length 3 bytes):   616263   SIGNATURE:   822f6901f7480f3d5f562c592994d969   3602875614483256505600bbc281ae38   1f54d6bce2ea911574932f52a4e6cadd   78769375ec3ffd1b801a0d9b3f4030cd   433964b6457ea39476511214f97469b5   7dd32dbc560a9a94d00bff07620464a3   ad203df7dc7ce360c3cd3696d9d9fab9   0f00Josefsson & Liusvaara         Informational                    [Page 38]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   -----TEST abc (with context)   ALGORITHM:   Ed448ph   SECRET KEY:   833fe62409237b9d62ec77587520911e   9a759cec1d19755b7da901b96dca3d42   ef7822e0d5104127dc05d6dbefde69e3   ab2cec7c867c6e2c49   PUBLIC KEY:   259b71c19f83ef77a7abd26524cbdb31   61b590a48f7d17de3ee0ba9c52beb743   c09428a131d6b1b57303d90d8132c276   d5ed3d5d01c0f53880   MESSAGE (length 3 bytes):   616263   CONTEXT:   666f6f   SIGNATURE:   c32299d46ec8ff02b54540982814dce9   a05812f81962b649d528095916a2aa48   1065b1580423ef927ecf0af5888f90da   0f6a9a85ad5dc3f280d91224ba9911a3   653d00e484e2ce232521481c8658df30   4bb7745a73514cdb9bf3e15784ab7128   4f8d0704a608c54a6b62d97beb511d13   2100   -----Josefsson & Liusvaara         Informational                    [Page 39]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20178.  Security Considerations8.1.  Side-Channel Leaks   For implementations performing signatures, secrecy of the private key   is fundamental.  It is possible to protect against some side-channel   attacks by ensuring that the implementation executes exactly the same   sequence of instructions and performs exactly the same memory   accesses, for any value of the private key.   To make an implementation side-channel silent in this way, the modulo   p arithmetic must not use any data-dependent branches, e.g., related   to carry propagation.  Side-channel silent point addition is   straightforward, thanks to the unified formulas.   Scalar multiplication, multiplying a point by an integer, needs some   additional effort to implement in a side-channel silent manner.  One   simple approach is to implement a side-channel silent conditional   assignment, and use it together with the binary algorithm to examine   one bit of the integer at a time.   Compared to other signature schemes, avoiding data-dependent branches   is easier due to side-channel silent modulo p arithmetic being easier   (with recommended curves) and having complete addition formulas   instead of having a number of special cases.   Note that the example implementations in this document do not attempt   to be side-channel silent.8.2.  Randomness Considerations   EdDSA signatures are deterministic.  This protects against attacks   arising from signing with bad randomness; the effects of which can,   depending on the algorithm, range up to full private key compromise.   It can be surprisingly hard to ensure good-quality random numbers,   and there have been numerous security failures relating to this.   Obviously, private key generation requires randomness, but due to the   fact that the private key is hashed before use, a few missing bits of   entropy doesn't constitute a disaster.   The basic signature verification is also deterministic.  However,   some speedups by verifying multiple signatures at once do require   random numbers.Josefsson & Liusvaara         Informational                    [Page 40]

RFC 8032                EdDSA: Ed25519 and Ed448            January 20178.3.  Use of Contexts   Contexts can be used to separate uses of the protocol between   different protocols (which is very hard to reliably do otherwise) and   between different uses within the same protocol.  However, the   following SHOULD be kept in mind when using this facility:      The context SHOULD be a constant string specified by the protocol      using it.  It SHOULD NOT incorporate variable elements from the      message itself.      Contexts SHOULD NOT be used opportunistically, as that kind of use      is very error prone.  If contexts are used, one SHOULD require all      signature schemes available for use in that purpose support      contexts.      Contexts are an extra input, which percolate out of APIs; as such,      even if the signature scheme supports contexts, those may not be      available for use.  This problem is compounded by the fact that      many times the application is not invoking the signing and      verification functions directly but via some other protocol.8.4.  Signature Malleability   Some systems assume signatures are not malleable: that is, given a   valid signature for some message under some key, the attacker can't   produce another valid signature for the same message and key.   Ed25519 and Ed448 signatures are not malleable due to the   verification check that decoded S is smaller than l.  Without this   check, one can add a multiple of l into a scalar part and still pass   signature verification, resulting in malleable signatures.8.5.  Choice of Signature Primitive   Ed25519 and Ed25519ph have a nominal strength of 128 bits, whereas   Ed448 and Ed448ph have the strength of 224.  While the lower strength   is sufficient for the foreseeable future, the higher level brings   some defense against possible future cryptographic advances.  Both   are demolished by quantum computers just about the same.   The Ed25519ph and Ed448ph variants are prehashed.  This is mainly   useful for interoperation with legacy APIs, since in most of the   cases, either the amount of data signed is not large or the protocol   is in the position to do digesting in ways better than just   prehashing (e.g., tree hashing or splitting the data).  TheJosefsson & Liusvaara         Informational                    [Page 41]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   prehashing also makes the functions greatly more vulnerable to   weaknesses in hash functions used.  These variants SHOULD NOT be   used.   Ed25519ctx and Ed448 have contexts.  However, this is balanced by the   problems noted inSection 8.3 about contexts.   On the implementation front, Ed25519 is widely implemented and has   many high-quality implementations.  The others have much worse   support.   In summary, if a high 128-bit security level is enough, use of   Ed25519 is RECOMMENDED; otherwise, Ed448 is RECOMMENDED.8.6.  Mixing Different Prehashes   The schemes described in this document are designed to be resistant   to mixing prehashes.  That is, it is infeasible to find a message   that verifies using the same signature under another scheme, even if   the original signed message was chosen.  Thus, one can use the same   key pair for Ed25519, Ed25519ctx, and Ed25519ph and correspondingly   with Ed448 and Ed448ph.   The "SigEd25519 no Ed25519 collisions" constant is chosen to be a   textual string such that it does not decode as a point.  Because the   inner hash input in the Ed25519 signature always starts with a valid   point, there is no way trivial collision can be constructed.  In the   case of seed hash, trivial collisions are so unlikely, even with an   attacker choosing all inputs, that it is much more probable that   something else goes catastrophically wrong.8.7.  Signing Large Amounts of Data at Once   Avoid signing large amounts of data at once (where "large" depends on   the expected verifier).  In particular, unless the underlying   protocol does not require it, the receiver MUST buffer the entire   message (or enough information to reconstruct it, e.g., compressed or   encrypted version) to be verified.   This is needed because most of the time, it is unsafe to process   unverified data, and verifying the signature makes a pass through the   whole message, causing ultimately at least two passes through.   As an API consideration, this means that any Initialize Update   Finalize (IFU) verification interface is prone to misuse.Josefsson & Liusvaara         Informational                    [Page 42]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   It is a bad idea to modify Ed25519 or Ed448 signing to be able to   create valid Ed25519/Ed448 signatures using an IUF interface with   only constant buffering.  Pretty much any error in such would cause   catastrophic security failure.8.8.  Multiplication by Cofactor in Verification   The given verification formulas for both Ed25519 and Ed448 multiply   points by the cofactor.  While this is not strictly necessary for   security (in fact, any signature that meets the non-multiplied   equation will satisfy the multiplied one), in some applications it is   undesirable for implementations to disagree about the exact set of   valid signatures.  Such disagreements could open up, e.g.,   fingerprinting attacks.8.9.  Use of SHAKE256 as a Hash Function   Ed448 uses SHAKE256 as a hash function, even if SHAKE256 is   specifically defined not to be a hash function.   The first potentially troublesome property is that shorter outputs   are prefixes of longer ones.  This is acceptable because output   lengths are fixed.   The second potentially troublesome property is failing to meet   standard hash security notions (especially with preimages).  However,   the estimated 256-bit security level against collisions and preimages   is sufficient to pair with a 224-bit level elliptic curve.9.  References9.1.  Normative References   [FIPS202]  National Institute of Standards and Technology, "SHA-3              Standard: Permutation-Based Hash and Extendable-Output              Functions", FIPS PUB 202, August 2015,              <http://dx.doi.org/10.6028/NIST.FIPS.202>.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, DOI              10.17487/RFC2119, March 1997,              <http://www.rfc-editor.org/info/rfc2119>.   [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms              (SHA and SHA-based HMAC and HKDF)",RFC 6234,              DOI 10.17487/RFC6234, May 2011,              <http://www.rfc-editor.org/info/rfc6234>.Josefsson & Liusvaara         Informational                    [Page 43]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves              for Security",RFC 7748, DOI 10.17487/RFC7748, January              2016, <http://www.rfc-editor.org/info/rfc7748>.9.2.  Informative References   [CURVE25519]              Bernstein, D., "Curve25519: new Diffie-Hellman speed              records", DOI 10.1007/11745853_14, February 2006,              <http://cr.yp.to/ecdh.html>.   [ED25519-LIBGCRYPT-TEST-VECTORS]              Koch, W., "Ed25519 Libgcrypt test vectors", July 2014,              <http://git.gnupg.org/cgi-bin/              gitweb.cgi?p=libgcrypt.git;a=blob;f=tests/t-ed25519.inp;              h=e13566f826321eece65e02c593bc7d885b3dbe23;hb=refs/              heads/master>.   [ED25519-TEST-VECTORS]              Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.              Yang, "Ed25519 test vectors", July 2011,              <http://ed25519.cr.yp.to/python/sign.input>.   [ED448]    Hamburg, M., "Ed448-Goldilocks, a new elliptic curve",              June 2015, <http://eprint.iacr.org/2015/625>.   [EDDSA]    Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.              Yang, "High-speed high-security signatures",              DOI 10.1007/978-3-642-23951-9_9, September 2011,              <http://ed25519.cr.yp.to/ed25519-20110926.pdf>.   [EDDSA2]   Bernstein, D., Josefsson, S., Lange, T., Schwabe, P., and              B. Yang, "EdDSA for more curves", July 2015,              <http://ed25519.cr.yp.to/eddsa-20150704.pdf>.   [Edwards-revisited]              Hisil, H., Wong, K., Carter, G., and E. Dawson, "Twisted              Edwards Curves Revisited",              DOI 10.1007/978-3-540-89255-7_20, December 2008,              <http://eprint.iacr.org/2008/522>.   [EFD-ADD]  Bernstein, D. and T. Lange, "Projective coordinates for              Edwards curves", The 'add-2007-bl' addition formulas,              2007, <http://www.hyperelliptic.org/EFD/g1p/auto-edwards-projective.html#addition-add-2007-bl>.Josefsson & Liusvaara         Informational                    [Page 44]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017   [EFD-DBL]  Bernstein, D. and T. Lange, "Projective coordinates for              Edwards curves", The 'dbl-2007-bl' doubling formulas,              2007, <http://www.hyperelliptic.org/EFD/g1p/auto-edwards-projective.html#doubling-dbl-2007-bl>.   [EFD-TWISTED-ADD]              Hisil, H., Wong, K., Carter, G., and E. Dawson, "Extended              coordinates with a=-1 for twisted Edwards curves", The              'add-2008-hwcd-3' addition formulas, December 2008,              <http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3>.   [EFD-TWISTED-DBL]              Hisil, H., Wong, K., Carter, G., and E. Dawson, "Extended              coordinates with a=-1 for twisted Edwards curves", The              'dbl-2008-hwcd' doubling formulas, December 2008,              <http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd>.   [Faster-ECC]              Bernstein, D. and T. Lange, "Faster addition and doubling              on elliptic curves", DOI 10.1007/978-3-540-76900-2_3,              July 2007, <http://eprint.iacr.org/2007/286>.   [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,              "Randomness Requirements for Security",BCP 106,RFC 4086,              DOI 10.17487/RFC4086, June 2005,              <http://www.rfc-editor.org/info/rfc4086>.Josefsson & Liusvaara         Informational                    [Page 45]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017Appendix A.  Ed25519/Ed448 Python Library   Below is an example implementation of Ed25519/Ed448 written in   Python; version 3.2 or higher is required.   Note: This code is not intended for production.  Although it should   produce correct results for every input, it is slow and makes no   attempt to avoid side-channel attacks.import hashlib;import os;#Compute candidate square root of x modulo p, with p = 3 (mod 4).def sqrt4k3(x,p): return pow(x,(p + 1)//4,p)#Compute candidate square root of x modulo p, with p = 5 (mod 8).def sqrt8k5(x,p):    y = pow(x,(p+3)//8,p)    #If the square root exists, it is either y or y*2^(p-1)/4.    if (y * y) % p == x % p: return y    else:        z = pow(2,(p - 1)//4,p)        return (y * z) % p#Decode a hexadecimal string representation of the integer.def hexi(s): return int.from_bytes(bytes.fromhex(s),byteorder="big")#Rotate a word x by b places to the left.def rol(x,b): return ((x << b) | (x >> (64 - b))) & (2**64-1)#From little endian.def from_le(s): return int.from_bytes(s, byteorder="little")#Do the SHA-3 state transform on state s.def sha3_transform(s):    ROTATIONS = [0,1,62,28,27,36,44,6,55,20,3,10,43,25,39,41,45,15,\                 21,8,18,2,61,56,14]    PERMUTATION = [1,6,9,22,14,20,2,12,13,19,23,15,4,24,21,8,16,5,3,\                   18,17,11,7,10]    RC = [0x0000000000000001,0x0000000000008082,0x800000000000808a,\          0x8000000080008000,0x000000000000808b,0x0000000080000001,\          0x8000000080008081,0x8000000000008009,0x000000000000008a,\          0x0000000000000088,0x0000000080008009,0x000000008000000a,\          0x000000008000808b,0x800000000000008b,0x8000000000008089,\          0x8000000000008003,0x8000000000008002,0x8000000000000080,\          0x000000000000800a,0x800000008000000a,0x8000000080008081,\          0x8000000000008080,0x0000000080000001,0x8000000080008008]Josefsson & Liusvaara         Informational                    [Page 46]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    for rnd in range(0,24):        #AddColumnParity (Theta)        c = [0]*5;        d = [0]*5;        for i in range(0,25): c[i%5]^=s[i]        for i in range(0,5): d[i]=c[(i+4)%5]^rol(c[(i+1)%5],1)        for i in range(0,25): s[i]^=d[i%5]        #RotateWords (Rho)        for i in range(0,25): s[i]=rol(s[i],ROTATIONS[i])        #PermuteWords (Pi)        t = s[PERMUTATION[0]]        for i in range(0,len(PERMUTATION)-1):            s[PERMUTATION[i]]=s[PERMUTATION[i+1]]        s[PERMUTATION[-1]]=t;        #NonlinearMixRows (Chi)        for i in range(0,25,5):            t=[s[i],s[i+1],s[i+2],s[i+3],s[i+4],s[i],s[i+1]]            for j in range(0,5): s[i+j]=t[j]^((~t[j+1])&(t[j+2]))        #AddRoundConstant (Iota)        s[0]^=RC[rnd]#Reinterpret octet array b to word array and XOR it to state s.def reinterpret_to_words_and_xor(s,b):    for j in range(0,len(b)//8):        s[j]^=from_le(b[8*j:][:8])#Reinterpret word array w to octet array and return it.def reinterpret_to_octets(w):    mp=bytearray()    for j in range(0,len(w)):        mp+=w[j].to_bytes(8,byteorder="little")    return mpJosefsson & Liusvaara         Informational                    [Page 47]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017#(semi-)generic SHA-3 implementationdef sha3_raw(msg,r_w,o_p,e_b):    r_b=8*r_w    s=[0]*25    #Handle whole blocks.    idx=0    blocks=len(msg)//r_b    for i in range(0,blocks):        reinterpret_to_words_and_xor(s,msg[idx:][:r_b])        idx+=r_b        sha3_transform(s)    #Handle last block padding.    m=bytearray(msg[idx:])    m.append(o_p)    while len(m) < r_b: m.append(0)    m[len(m)-1]|=128    #Handle padded last block.    reinterpret_to_words_and_xor(s,m)    sha3_transform(s)    #Output.    out = bytearray()    while len(out)<e_b:        out+=reinterpret_to_octets(s[:r_w])        sha3_transform(s)    return out[:e_b]#Implementation of SHAKE256 functions.def shake256(msg,olen): return sha3_raw(msg,17,31,olen)Josefsson & Liusvaara         Informational                    [Page 48]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017#A (prime) field element.class Field:    #Construct number x (mod p).    def __init__(self,x,p):        self.__x=x%p        self.__p=p    #Check that fields of self and y are the same.    def __check_fields(self,y):        if type(y) is not Field or self.__p!=y.__p:            raise ValueError("Fields don't match")    #Field addition.  The fields must match.    def __add__(self,y):        self.__check_fields(y)        return Field(self.__x+y.__x,self.__p)    #Field subtraction.  The fields must match.    def __sub__(self,y):        self.__check_fields(y)        return Field(self.__p+self.__x-y.__x,self.__p)    #Field negation.    def __neg__(self):        return Field(self.__p-self.__x,self.__p)    #Field multiplication.  The fields must match.    def __mul__(self,y):        self.__check_fields(y)        return Field(self.__x*y.__x,self.__p)    #Field division.  The fields must match.    def __truediv__(self,y):        return self*y.inv()    #Field inverse (inverse of 0 is 0).    def inv(self):        return Field(pow(self.__x,self.__p-2,self.__p),self.__p)    #Field square root.  Returns none if square root does not exist.    #Note: not presently implemented for p mod 8 = 1 case.    def sqrt(self):        #Compute candidate square root.        if self.__p%4==3: y=sqrt4k3(self.__x,self.__p)        elif self.__p%8==5: y=sqrt8k5(self.__x,self.__p)        else: raise NotImplementedError("sqrt(_,8k+1)")        _y=Field(y,self.__p);        #Check square root candidate valid.        return _y if _y*_y==self else None    #Make the field element with the same field as this, but    #with a different value.    def make(self,ival): return Field(ival,self.__p)    #Is the field element the additive identity?    def iszero(self): return self.__x==0    #Are field elements equal?    def __eq__(self,y): return self.__x==y.__x and self.__p==y.__pJosefsson & Liusvaara         Informational                    [Page 49]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    #Are field elements not equal?    def __ne__(self,y): return not (self==y)    #Serialize number to b-1 bits.    def tobytes(self,b):        return self.__x.to_bytes(b//8,byteorder="little")    #Unserialize number from bits.    def frombytes(self,x,b):        rv=from_le(x)%(2**(b-1))        return Field(rv,self.__p) if rv<self.__p else None    #Compute sign of number, 0 or 1.  The sign function    #has the following property:    #sign(x) = 1 - sign(-x) if x != 0.    def sign(self): return self.__x%2#A point on (twisted) Edwards curve.class EdwardsPoint:    #base_field = None    #x = None    #y = None    #z = None    def initpoint(self, x, y):        self.x=x        self.y=y        self.z=self.base_field.make(1)    def decode_base(self,s,b):        #Check that point encoding is the correct length.        if len(s)!=b//8: return (None,None)        #Extract signbit.        xs=s[(b-1)//8]>>((b-1)&7)        #Decode y.  If this fails, fail.        y = self.base_field.frombytes(s,b)        if y is None: return (None,None)        #Try to recover x.  If it does not exist, or if zero and xs        #are wrong, fail.        x=self.solve_x2(y).sqrt()        if x is None or (x.iszero() and xs!=x.sign()):            return (None,None)        #If sign of x isn't correct, flip it.        if x.sign()!=xs: x=-x        # Return the constructed point.        return (x,y)    def encode_base(self,b):        xp,yp=self.x/self.z,self.y/self.z        #Encode y.        s=bytearray(yp.tobytes(b))        #Add sign bit of x to encoding.        if xp.sign()!=0: s[(b-1)//8]|=1<<(b-1)%8        return sJosefsson & Liusvaara         Informational                    [Page 50]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    def __mul__(self,x):        r=self.zero_elem()        s=self        while x > 0:            if (x%2)>0:                r=r+s            s=s.double()            x=x//2        return r    #Check that two points are equal.    def __eq__(self,y):        #Need to check x1/z1 == x2/z2 and similarly for y, so cross        #multiply to eliminate divisions.        xn1=self.x*y.z        xn2=y.x*self.z        yn1=self.y*y.z        yn2=y.y*self.z        return xn1==xn2 and yn1==yn2    #Check if two points are not equal.    def __ne__(self,y): return not (self==y)#A point on Edwards25519.class Edwards25519Point(EdwardsPoint):    #Create a new point on the curve.    base_field=Field(1,2**255-19)    d=-base_field.make(121665)/base_field.make(121666)    f0=base_field.make(0)    f1=base_field.make(1)    xb=base_field.make(hexi("216936D3CD6E53FEC0A4E231FDD6DC5C692CC76"+\        "09525A7B2C9562D608F25D51A"))    yb=base_field.make(hexi("666666666666666666666666666666666666666"+\        "6666666666666666666666658"))    #The standard base point.    @staticmethod    def stdbase():        return Edwards25519Point(Edwards25519Point.xb,\            Edwards25519Point.yb)    def __init__(self,x,y):        #Check the point is actually on the curve.        if y*y-x*x!=self.f1+self.d*x*x*y*y:            raise ValueError("Invalid point")        self.initpoint(x, y)        self.t=x*y    #Decode a point representation.    def decode(self,s):        x,y=self.decode_base(s,256);        return Edwards25519Point(x, y) if x is not None else NoneJosefsson & Liusvaara         Informational                    [Page 51]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    #Encode a point representation.    def encode(self):        return self.encode_base(256)    #Construct a neutral point on this curve.    def zero_elem(self):        return Edwards25519Point(self.f0,self.f1)    #Solve for x^2.    def solve_x2(self,y):        return ((y*y-self.f1)/(self.d*y*y+self.f1))    #Point addition.    def __add__(self,y):        #The formulas are from EFD.        tmp=self.zero_elem()        zcp=self.z*y.z        A=(self.y-self.x)*(y.y-y.x)        B=(self.y+self.x)*(y.y+y.x)        C=(self.d+self.d)*self.t*y.t        D=zcp+zcp        E,H=B-A,B+A        F,G=D-C,D+C        tmp.x,tmp.y,tmp.z,tmp.t=E*F,G*H,F*G,E*H        return tmp    #Point doubling.    def double(self):        #The formulas are from EFD (with assumption a=-1 propagated).        tmp=self.zero_elem()        A=self.x*self.x        B=self.y*self.y        Ch=self.z*self.z        C=Ch+Ch        H=A+B        xys=self.x+self.y        E=H-xys*xys        G=A-B        F=C+G        tmp.x,tmp.y,tmp.z,tmp.t=E*F,G*H,F*G,E*H        return tmp    #Order of basepoint.    def l(self):        return hexi("1000000000000000000000000000000014def9dea2f79cd"+\            "65812631a5cf5d3ed")    #The logarithm of cofactor.    def c(self): return 3    #The highest set bit    def n(self): return 254    #The coding length    def b(self): return 256Josefsson & Liusvaara         Informational                    [Page 52]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    #Validity check (for debugging)    def is_valid_point(self):        x,y,z,t=self.x,self.y,self.z,self.t        x2=x*x        y2=y*y        z2=z*z        lhs=(y2-x2)*z2        rhs=z2*z2+self.d*x2*y2        assert(lhs == rhs)        assert(t*z == x*y)#A point on Edwards448.class Edwards448Point(EdwardsPoint):    #Create a new point on the curve.    base_field=Field(1,2**448-2**224-1)    d=base_field.make(-39081)    f0=base_field.make(0)    f1=base_field.make(1)    xb=base_field.make(hexi("4F1970C66BED0DED221D15A622BF36DA9E14657"+\        "0470F1767EA6DE324A3D3A46412AE1AF72AB66511433B80E18B00938E26"+\        "26A82BC70CC05E"))    yb=base_field.make(hexi("693F46716EB6BC248876203756C9C7624BEA737"+\        "36CA3984087789C1E05A0C2D73AD3FF1CE67C39C4FDBD132C4ED7C8AD98"+\        "08795BF230FA14"))    #The standard base point.    @staticmethod    def stdbase():        return Edwards448Point(Edwards448Point.xb,Edwards448Point.yb)    def __init__(self,x,y):        #Check that the point is actually on the curve.        if y*y+x*x!=self.f1+self.d*x*x*y*y:            raise ValueError("Invalid point")        self.initpoint(x, y)    #Decode a point representation.    def decode(self,s):        x,y=self.decode_base(s,456);        return Edwards448Point(x, y) if x is not None else None    #Encode a point representation.    def encode(self):        return self.encode_base(456)    #Construct a neutral point on this curve.    def zero_elem(self):        return Edwards448Point(self.f0,self.f1)    #Solve for x^2.    def solve_x2(self,y):        return ((y*y-self.f1)/(self.d*y*y-self.f1))Josefsson & Liusvaara         Informational                    [Page 53]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    #Point addition.    def __add__(self,y):        #The formulas are from EFD.        tmp=self.zero_elem()        xcp,ycp,zcp=self.x*y.x,self.y*y.y,self.z*y.z        B=zcp*zcp        E=self.d*xcp*ycp        F,G=B-E,B+E        tmp.x=zcp*F*((self.x+self.y)*(y.x+y.y)-xcp-ycp)        tmp.y,tmp.z=zcp*G*(ycp-xcp),F*G        return tmp    #Point doubling.    def double(self):        #The formulas are from EFD.        tmp=self.zero_elem()        x1s,y1s,z1s=self.x*self.x,self.y*self.y,self.z*self.z        xys=self.x+self.y        F=x1s+y1s        J=F-(z1s+z1s)        tmp.x,tmp.y,tmp.z=(xys*xys-x1s-y1s)*J,F*(x1s-y1s),F*J        return tmp    #Order of basepoint.    def l(self):        return hexi("3ffffffffffffffffffffffffffffffffffffffffffffff"+\            "fffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c2"+\            "92ab5844f3")    #The logarithm of cofactor.    def c(self): return 2    #The highest set bit.    def n(self): return 447    #The coding length.    def b(self): return 456    #Validity check (for debugging).    def is_valid_point(self):        x,y,z=self.x,self.y,self.z        x2=x*x        y2=y*y        z2=z*z        lhs=(x2+y2)*z2        rhs=z2*z2+self.d*x2*y2        assert(lhs == rhs)Josefsson & Liusvaara         Informational                    [Page 54]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017#Simple self-check.def curve_self_check(point):    p=point    q=point.zero_elem()    z=q    l=p.l()+1    p.is_valid_point()    q.is_valid_point()    for i in range(0,point.b()):        if (l>>i)&1 != 0:            q=q+p            q.is_valid_point()        p=p.double()        p.is_valid_point()    assert q.encode() == point.encode()    assert q.encode() != p.encode()    assert q.encode() != z.encode()#Simple self-check.def self_check_curves():    curve_self_check(Edwards25519Point.stdbase())    curve_self_check(Edwards448Point.stdbase())#PureEdDSA scheme.#Limitation: only b mod 8 = 0 is handled.class PureEdDSA:    #Create a new object.    def __init__(self,properties):        self.B=properties["B"]        self.H=properties["H"]        self.l=self.B.l()        self.n=self.B.n()        self.b=self.B.b()        self.c=self.B.c()    #Clamp a private scalar.    def __clamp(self,a):        _a = bytearray(a)        for i in range(0,self.c): _a[i//8]&=~(1<<(i%8))        _a[self.n//8]|=1<<(self.n%8)        for i in range(self.n+1,self.b): _a[i//8]&=~(1<<(i%8))        return _a    #Generate a key.  If privkey is None, a random one is generated.    #In any case, the (privkey, pubkey) pair is returned.    def keygen(self,privkey):        #If no private key data is given, generate random.        if privkey is None: privkey=os.urandom(self.b//8)Josefsson & Liusvaara         Informational                    [Page 55]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017        #Expand key.        khash=self.H(privkey,None,None)        a=from_le(self.__clamp(khash[:self.b//8]))        #Return the key pair (public key is A=Enc(aB).        return privkey,(self.B*a).encode()    #Sign with key pair.    def sign(self,privkey,pubkey,msg,ctx,hflag):        #Expand key.        khash=self.H(privkey,None,None)        a=from_le(self.__clamp(khash[:self.b//8]))        seed=khash[self.b//8:]        #Calculate r and R (R only used in encoded form).        r=from_le(self.H(seed+msg,ctx,hflag))%self.l        R=(self.B*r).encode()        #Calculate h.        h=from_le(self.H(R+pubkey+msg,ctx,hflag))%self.l        #Calculate s.        S=((r+h*a)%self.l).to_bytes(self.b//8,byteorder="little")        #The final signature is a concatenation of R and S.        return R+S    #Verify signature with public key.    def verify(self,pubkey,msg,sig,ctx,hflag):        #Sanity-check sizes.        if len(sig)!=self.b//4: return False        if len(pubkey)!=self.b//8: return False        #Split signature into R and S, and parse.        Rraw,Sraw=sig[:self.b//8],sig[self.b//8:]        R,S=self.B.decode(Rraw),from_le(Sraw)        #Parse public key.        A=self.B.decode(pubkey)        #Check parse results.        if (R is None) or (A is None) or S>=self.l: return False        #Calculate h.        h=from_le(self.H(Rraw+pubkey+msg,ctx,hflag))%self.l        #Calculate left and right sides of check eq.        rhs=R+(A*h)        lhs=self.B*S        for i in range(0, self.c):            lhs = lhs.double()            rhs = rhs.double()        #Check eq. holds?        return lhs==rhsdef Ed25519_inthash(data,ctx,hflag):    if (ctx is not None and len(ctx) > 0) or hflag:        raise ValueError("Contexts/hashes not supported")    return hashlib.sha512(data).digest()Josefsson & Liusvaara         Informational                    [Page 56]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017#The base PureEdDSA schemes.pEd25519=PureEdDSA({\    "B":Edwards25519Point.stdbase(),\    "H":Ed25519_inthash\})def Ed25519ctx_inthash(data,ctx,hflag):    dompfx = b""    PREFIX=b"SigEd25519 no Ed25519 collisions"    if ctx is not None:        if len(ctx) > 255: raise ValueError("Context too big")        dompfx=PREFIX+bytes([1 if hflag else 0,len(ctx)])+ctx    return hashlib.sha512(dompfx+data).digest()pEd25519ctx=PureEdDSA({\    "B":Edwards25519Point.stdbase(),\    "H":Ed25519ctx_inthash\})def Ed448_inthash(data,ctx,hflag):    dompfx = b""    if ctx is not None:        if len(ctx) > 255: raise ValueError("Context too big")        dompfx=b"SigEd448"+bytes([1 if hflag else 0,len(ctx)])+ctx    return shake256(dompfx+data,114)pEd448 = PureEdDSA({\    "B":Edwards448Point.stdbase(),\    "H":Ed448_inthash\})#EdDSA scheme.class EdDSA:    #Create a new scheme object, with the specified PureEdDSA base    #scheme and specified prehash.    def __init__(self,pure_scheme,prehash):        self.__pflag = True        self.__pure=pure_scheme        self.__prehash=prehash        if self.__prehash is None:            self.__prehash = lambda x,y:x            self.__pflag = False    # Generate a key.  If privkey is none, it generates a random    # privkey key, otherwise it uses a specified private key.    # Returns pair (privkey, pubkey).    def keygen(self,privkey): return self.__pure.keygen(privkey)Josefsson & Liusvaara         Informational                    [Page 57]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017    # Sign message msg using specified key pair.    def sign(self,privkey,pubkey,msg,ctx=None):        if ctx is None: ctx=b"";        return self.__pure.sign(privkey,pubkey,self.__prehash(msg,ctx),\            ctx,self.__pflag)    # Verify signature sig on message msg using public key pubkey.    def verify(self,pubkey,msg,sig,ctx=None):        if ctx is None: ctx=b"";        return self.__pure.verify(pubkey,self.__prehash(msg,ctx),sig,\            ctx,self.__pflag)def Ed448ph_prehash(data,ctx):    return shake256(data,64)#Our signature schemes.Ed25519 = EdDSA(pEd25519,None)Ed25519ctx = EdDSA(pEd25519ctx,None)Ed25519ph = EdDSA(pEd25519ctx,lambda x,y:hashlib.sha512(x).digest())Ed448 = EdDSA(pEd448,None)Ed448ph = EdDSA(pEd448,Ed448ph_prehash)def eddsa_obj(name):    if name == "Ed25519": return Ed25519    if name == "Ed25519ctx": return Ed25519ctx    if name == "Ed25519ph": return Ed25519ph    if name == "Ed448": return Ed448    if name == "Ed448ph": return Ed448ph    raise NotImplementedError("Algorithm not implemented")Appendix B.  Library Driver   Below is a command-line tool that uses the library above to perform   computations for interactive use or for self-checking.import sysimport binasciifrom eddsa2 import Ed25519def munge_string(s, pos, change):    return (s[:pos] +            int.to_bytes(s[pos] ^ change, 1, "little") +            s[pos+1:])Josefsson & Liusvaara         Informational                    [Page 58]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017# Read a file in the format of#http://ed25519.cr.yp.to/python/sign.inputlineno = 0while True:    line = sys.stdin.readline()    if not line:        break    lineno = lineno + 1    print(lineno)    fields = line.split(":")    secret = (binascii.unhexlify(fields[0]))[:32]    public = binascii.unhexlify(fields[1])    msg = binascii.unhexlify(fields[2])    signature = binascii.unhexlify(fields[3])[:64]    privkey,pubkey = Ed25519.keygen(secret)    assert public == pubkey    assert signature == Ed25519.sign(privkey, pubkey, msg)    assert Ed25519.verify(public, msg, signature)    if len(msg) == 0:        bad_msg = b"x"    else:        bad_msg = munge_string(msg, len(msg) // 3, 4)    assert not Ed25519.verify(public,bad_msg,signature)    assert not Ed25519.verify(public, msg, munge_string(signature,20,8))    assert not Ed25519.verify(public,msg,munge_string(signature,40,16))Josefsson & Liusvaara         Informational                    [Page 59]

RFC 8032                EdDSA: Ed25519 and Ed448            January 2017Acknowledgements   EdDSA and Ed25519 were initially described in a paper due to Daniel   J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin   Yang.  The Ed448 curve is due to Mike Hamburg.   An earlier draft version of this document was coauthored by Niels   Moeller.   Feedback on this document was received from Werner Koch, Damien   Miller, Bob Bradley, Franck Rondepierre, Alexey Melnikov, Kenny   Paterson, and Robert Edmonds.   The Ed25519 test vectors were double checked by Bob Bradley using   three separate implementations (one based on TweetNaCl and two   different implementations based on code from SUPERCOP).Authors' Addresses   Simon Josefsson   SJD AB   Email: simon@josefsson.org   URI:http://josefsson.org/   Ilari Liusvaara   Independent   Email: ilariliusvaara@welho.comJosefsson & Liusvaara         Informational                    [Page 60]

[8]ページ先頭

©2009-2025 Movatter.jp