- Functions
- Adjugate
- CharacteristicPolynomial
- ConjugateTranspose
- Det
- Diagonal
- Dot
- Eigensystem
- Eigenvalues
- Eigenvectors
- Inverse
- KroneckerProduct
- LinearSolve
- LowerTriangularize
- MatrixExp
- MatrixFunction
- MatrixLog
- MatrixMinimalPolynomial
- MatrixPower
- MatrixRank
- Minors
- Norm
- NullSpace
- Permanent
- PseudoInverse
- RangeSpace
- RowReduce
- Symmetrize
- Tr
- Transpose
- UpperTriangularize
- Related Guides
- Tech Notes
- Functions
- Adjugate
- CharacteristicPolynomial
- ConjugateTranspose
- Det
- Diagonal
- Dot
- Eigensystem
- Eigenvalues
- Eigenvectors
- Inverse
- KroneckerProduct
- LinearSolve
- LowerTriangularize
- MatrixExp
- MatrixFunction
- MatrixLog
- MatrixMinimalPolynomial
- MatrixPower
- MatrixRank
- Minors
- Norm
- NullSpace
- Permanent
- PseudoInverse
- RangeSpace
- RowReduce
- Symmetrize
- Tr
- Transpose
- UpperTriangularize
- Related Guides
- Tech Notes
- Functions
Matrix Operations
The Wolfram Language's matrix operations handle both numeric and symbolic matrices, automatically accessing large numbers of highly efficient algorithms. The Wolfram Language uses state-of-the-art algorithms to work with both dense and sparse matrices, and incorporates a number of powerful original algorithms, especially for high-precision and symbolic matrices.
+,*,^,...— all automatically work element-wise
Dot (.)— products of matrices, automatically handling row and column vectors
Inverse— matrix inverse (useLinearSolve for linear systems)
MatrixRank— rank of a matrix
NullSpace— vectors spanning the null space of a matrix
RangeSpace— vectors spanning the range space of a matrix
RowReduce— reduced row echelon form
PseudoInverse— pseudoinverse of a square or rectangular matrix
Transpose— transpose (
, entered with
tr
)
ConjugateTranspose— conjugate transpose (
, entered with
ct
)
LowerTriangularize,UpperTriangularize— extract the lower- or upper-triangular part of a matrix
Symmetrize— find the symmetric, antisymmetric, etc. part of a matrix
Diagonal— get the list of elements on the diagonal
Tr— trace
Det— determinant
Norm— operator norm,p-norms and Frobenius norm
Adjugate— adjugate
Minors— matrices of minors
Permanent— permanent
KroneckerProduct— matrix direct product (outer product)
MatrixPower— powers of numeric or symbolic matrices
MatrixExp— matrix exponential
MatrixLog— matrix logarithm
MatrixFunction— general matrix function
Eigenvalues,Eigenvectors— exact or approximate eigenvalues and eigenvectors
Eigensystem— eigenvalues and eigenvectors together
CharacteristicPolynomial— symbolic characteristic polynomial
Related Tech Notes
[8]ページ先頭