Sequential#
- classtorch.nn.Sequential(*args:Module)[source]#
- classtorch.nn.Sequential(arg:OrderedDict[str,Module])
A sequential container.
Modules will be added to it in the order they are passed in theconstructor. Alternatively, an
OrderedDictof modules can bepassed in. Theforward()method ofSequentialaccepts anyinput and forwards it to the first module it contains. It then“chains” outputs to inputs sequentially for each subsequent module,finally returning the output of the last module.The value a
Sequentialprovides over manually calling a sequenceof modules is that it allows treating the whole container as asingle module, such that performing a transformation on theSequentialapplies to each of the modules it stores (which areeach a registered submodule of theSequential).What’s the difference between a
Sequentialand atorch.nn.ModuleList? AModuleListis exactly what itsounds like–a list for storingModules! On the other hand,the layers in aSequentialare connected in a cascading way.Example:
# Using Sequential to create a small model. When `model` is run,# input will first be passed to `Conv2d(1,20,5)`. The output of# `Conv2d(1,20,5)` will be used as the input to the first# `ReLU`; the output of the first `ReLU` will become the input# for `Conv2d(20,64,5)`. Finally, the output of# `Conv2d(20,64,5)` will be used as input to the second `ReLU`model=nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the# same as the above codemodel=nn.Sequential(OrderedDict([("conv1",nn.Conv2d(1,20,5)),("relu1",nn.ReLU()),("conv2",nn.Conv2d(20,64,5)),("relu2",nn.ReLU()),]))
- append(module)[source]#
Append a given module to the end.
- Parameters
module (nn.Module) – module to append
- Return type
Self
Example:
>>>importtorch.nnasnn>>>n=nn.Sequential(nn.Linear(1,2),nn.Linear(2,3))>>>n.append(nn.Linear(3,4))Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True))
- extend(sequential)[source]#
Extends the current Sequential container with layers from another Sequential container.
- Parameters
sequential (Sequential) – A Sequential container whose layers will be added to the current container.
- Return type
Self
Example:
>>>importtorch.nnasnn>>>n=nn.Sequential(nn.Linear(1,2),nn.Linear(2,3))>>>other=nn.Sequential(nn.Linear(3,4),nn.Linear(4,5))>>>n.extend(other)# or `n + other`Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) (3): Linear(in_features=4, out_features=5, bias=True))
- insert(index,module)[source]#
Inserts a module into the Sequential container at the specified index.
- Parameters
- Return type
Self
Example:
>>>importtorch.nnasnn>>>n=nn.Sequential(nn.Linear(1,2),nn.Linear(2,3))>>>n.insert(0,nn.Linear(3,4))Sequential( (0): Linear(in_features=3, out_features=4, bias=True) (1): Linear(in_features=1, out_features=2, bias=True) (2): Linear(in_features=2, out_features=3, bias=True))