Rate this Page

LocalResponseNorm#

classtorch.nn.modules.normalization.LocalResponseNorm(size,alpha=0.0001,beta=0.75,k=1.0)[source]#

Applies local response normalization over an input signal.

The input signal is composed of several input planes, where channels occupy the second dimension.Applies normalization across channels.

bc=ac(k+αnc=max(0,cn/2)min(N1,c+n/2)ac2)βb_{c} = a_{c}\left(k + \frac{\alpha}{n}\sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}
Parameters
  • size (int) – amount of neighbouring channels used for normalization

  • alpha (float) – multiplicative factor. Default: 0.0001

  • beta (float) – exponent. Default: 0.75

  • k (float) – additive factor. Default: 1

Shape:

Examples:

>>>lrn=nn.LocalResponseNorm(2)>>>signal_2d=torch.randn(32,5,24,24)>>>signal_4d=torch.randn(16,5,7,7,7,7)>>>output_2d=lrn(signal_2d)>>>output_4d=lrn(signal_4d)
extra_repr()[source]#

Return the extra representation of the module.

forward(input)[source]#

Runs the forward pass.

Return type

Tensor