Transformer#
- classtorch.nn.Transformer(d_model=512,nhead=8,num_encoder_layers=6,num_decoder_layers=6,dim_feedforward=2048,dropout=0.1,activation=<functionrelu>,custom_encoder=None,custom_decoder=None,layer_norm_eps=1e-05,batch_first=False,norm_first=False,bias=True,device=None,dtype=None)[source]#
A basic transformer layer.
This Transformer layer implements the original Transformer architecture describedin theAttention Is All You Need paper. Theintent of this layer is as a reference implementation for foundational understandingand thus it contains only limited features relative to newer Transformer architectures.Given the fast pace of innovation in transformer-like architectures, we recommendexploring thistutorialto build an efficient transformer layer from building blocks in core or using higherlevel libraries from thePyTorch Ecosystem.
- Parameters
d_model (int) – the number of expected features in the encoder/decoder inputs (default=512).
nhead (int) – the number of heads in the multiheadattention models (default=8).
num_encoder_layers (int) – the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers (int) – the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward (int) – the dimension of the feedforward network model (default=2048).
dropout (float) – the dropout value (default=0.1).
activation (Union[str,Callable[[Tensor],Tensor]]) – the activation function of encoder/decoder intermediate layer, can be a string(“relu” or “gelu”) or a unary callable. Default: relu
custom_encoder (Optional[Any]) – custom encoder (default=None).
custom_decoder (Optional[Any]) – custom decoder (default=None).
layer_norm_eps (float) – the eps value in layer normalization components (default=1e-5).
batch_first (bool) – If
True, then the input and output tensors are providedas (batch, seq, feature). Default:False(seq, batch, feature).norm_first (bool) – if
True, encoder and decoder layers will perform LayerNorms beforeother attention and feedforward operations, otherwise after. Default:False(after).bias (bool) – If set to
False,LinearandLayerNormlayers will not learn an additivebias. Default:True.
Examples
>>>transformer_model=nn.Transformer(nhead=16,num_encoder_layers=12)>>>src=torch.rand((10,32,512))>>>tgt=torch.rand((20,32,512))>>>out=transformer_model(src,tgt)
Note: A full example to apply nn.Transformer module for the word language model is available inpytorch/examples
- forward(src,tgt,src_mask=None,tgt_mask=None,memory_mask=None,src_key_padding_mask=None,tgt_key_padding_mask=None,memory_key_padding_mask=None,src_is_causal=None,tgt_is_causal=None,memory_is_causal=False)[source]#
Take in and process masked source/target sequences.
Note
If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a
Truevalue arenot allowed to participate in the attention,which is the opposite of the definition forattn_maskintorch.nn.functional.scaled_dot_product_attention().- Parameters
src (Tensor) – the sequence to the encoder (required).
tgt (Tensor) – the sequence to the decoder (required).
src_mask (Optional[Tensor]) – the additive mask for the src sequence (optional).
tgt_mask (Optional[Tensor]) – the additive mask for the tgt sequence (optional).
memory_mask (Optional[Tensor]) – the additive mask for the encoder output (optional).
src_key_padding_mask (Optional[Tensor]) – the Tensor mask for src keys per batch (optional).
tgt_key_padding_mask (Optional[Tensor]) – the Tensor mask for tgt keys per batch (optional).
memory_key_padding_mask (Optional[Tensor]) – the Tensor mask for memory keys per batch (optional).
src_is_causal (Optional[bool]) – If specified, applies a causal mask as
src_mask.Default:None; try to detect a causal mask.Warning:src_is_causalprovides a hint thatsrc_maskisthe causal mask. Providing incorrect hints can result inincorrect execution, including forward and backwardcompatibility.tgt_is_causal (Optional[bool]) – If specified, applies a causal mask as
tgt_mask.Default:None; try to detect a causal mask.Warning:tgt_is_causalprovides a hint thattgt_maskisthe causal mask. Providing incorrect hints can result inincorrect execution, including forward and backwardcompatibility.memory_is_causal (bool) – If specified, applies a causal mask as
memory_mask.Default:False.Warning:memory_is_causalprovides a hint thatmemory_maskis the causal mask. Providing incorrecthints can result in incorrect execution, includingforward and backward compatibility.
- Return type
- Shape:
src: for unbatched input, ifbatch_first=False or(N, S, E) ifbatch_first=True.
tgt: for unbatched input, ifbatch_first=False or(N, T, E) ifbatch_first=True.
src_mask: or.
tgt_mask: or.
memory_mask:.
src_key_padding_mask: for unbatched input otherwise.
tgt_key_padding_mask: for unbatched input otherwise.
memory_key_padding_mask: for unbatched input otherwise.
Note: [src/tgt/memory]_mask ensures that position is allowed to attend the unmaskedpositions. If a BoolTensor is provided, positions with
Trueare not allowed to attend whileFalsevalues will be unchanged. If a FloatTensoris provided, it will be added to the attention weight.[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored bythe attention. If a BoolTensor is provided, the positions with thevalue ofTruewill be ignored while the position with the value ofFalsewill be unchanged.output: for unbatched input, ifbatch_first=False or(N, T, E) ifbatch_first=True.
Note: Due to the multi-head attention architecture in the transformer model,the output sequence length of a transformer is same as the input sequence(i.e. target) length of the decoder.
where is the source sequence length, is the target sequence length, is thebatch size, is the feature number
Examples
>>>output=transformer_model(...src,tgt,src_mask=src_mask,tgt_mask=tgt_mask...)