LinearLR#
- classtorch.optim.lr_scheduler.LinearLR(optimizer,start_factor=0.3333333333333333,end_factor=1.0,total_iters=5,last_epoch=-1)[source]#
Decays the learning rate of each parameter group by linearly changing small multiplicative factor.
The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters.Notice that such decay can happen simultaneously with other changes to the learning ratefrom outside this scheduler. When last_epoch=-1, sets initial lr as lr.
- Parameters
optimizer (Optimizer) – Wrapped optimizer.
start_factor (float) – The number we multiply learning rate in the first epoch.The multiplication factor changes towards end_factor in the following epochs.Default: 1./3.
end_factor (float) – The number we multiply learning rate at the end of linear changingprocess. Default: 1.0.
total_iters (int) – The number of iterations that multiplicative factor reaches to 1.Default: 5.
last_epoch (int) – The index of the last epoch. Default: -1.
Example
>>># Assuming optimizer uses lr = 0.05 for all groups>>># lr = 0.003687 if epoch == 0>>># lr = 0.004875 if epoch == 1>>># lr = 0.006062 if epoch == 2>>># lr = 0.00725 if epoch == 3>>># ...>>># lr = 0.05 if epoch >= 40>>>scheduler=LinearLR(optimizer,start_factor=0.05,total_iters=40)>>>forepochinrange(100):>>>train(...)>>>validate(...)>>>scheduler.step()

- load_state_dict(state_dict)[source]#
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returnedfrom a call to
state_dict().