ConstantLR#
- classtorch.optim.lr_scheduler.ConstantLR(optimizer,factor=0.3333333333333333,total_iters=5,last_epoch=-1)[source]#
Multiply the learning rate of each parameter group by a small constant factor.
The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters.Notice that such multiplication of the small constant factor canhappen simultaneously with other changes to the learning rate from outside this scheduler.When last_epoch=-1, sets initial lr as lr.
- Parameters
optimizer (Optimizer) – Wrapped optimizer.
factor (float) – The number we multiply learning rate until the milestone. Default: 1./3.
total_iters (int) – The number of steps that the scheduler multiplies the learning rate by the factor.Default: 5.
last_epoch (int) – The index of the last epoch. Default: -1.
Example
>>># Assuming optimizer uses lr = 0.05 for all groups>>># lr = 0.025 if epoch == 0>>># lr = 0.025 if epoch == 1>>># lr = 0.025 if epoch == 2>>># lr = 0.025 if epoch == 3>>># ...>>># lr = 0.05 if epoch >= 40>>>scheduler=ConstantLR(optimizer,factor=0.5,total_iters=40)>>>forepochinrange(100):>>>train(...)>>>validate(...)>>>scheduler.step()

- load_state_dict(state_dict)[source]#
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returnedfrom a call to
state_dict().