Note
Clickhereto download the full example code
Torchaudio-Squim: Non-intrusive Speech Assessment in TorchAudio¶
Author:Anurag Kumar,ZhaohengNi
1. Overview¶
This tutorial shows uses of Torchaudio-Squim to estimate objective andsubjective metrics for assessment of speech quality and intelligibility.
TorchAudio-Squim enables speech assessment in Torchaudio. It providesinterface and pre-trained models to estimate various speech quality andintelligibility metrics. Currently, Torchaudio-Squim [1] supportsreference-free estimation 3 widely used objective metrics:
Wideband Perceptual Estimation of Speech Quality (PESQ) [2]
Short-Time Objective Intelligibility (STOI) [3]
Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [4]
It also supports estimation of subjective Mean Opinion Score (MOS) for agiven audio waveform using Non-Matching References [1, 5].
References
[1] Kumar, Anurag, et al. “TorchAudio-Squim: Reference-less SpeechQuality and Intelligibility measures in TorchAudio.” ICASSP 2023-2023IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). IEEE, 2023.
[2] I. Rec, “P.862.2: Wideband extension to recommendation P.862 for theassessment of wideband telephone networks and speech codecs,”International Telecommunication Union, CH–Geneva, 2005.
[3] Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2010,March). A short-time objective intelligibility measure fortime-frequency weighted noisy speech. In 2010 IEEE internationalconference on acoustics, speech and signal processing (pp. 4214-4217).IEEE.
[4] Le Roux, Jonathan, et al. “SDR–half-baked or well done?.” ICASSP2019-2019 IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP). IEEE, 2019.
[5] Manocha, Pranay, and Anurag Kumar. “Speech quality assessmentthrough MOS using non-matching references.” Interspeech, 2022.
importtorchimporttorchaudioprint(torch.__version__)print(torchaudio.__version__)
2.6.0.dev202411042.5.0.dev20241105
2. Preparation¶
First import the modules and define the helper functions.
We will need torch, torchaudio to use Torchaudio-squim, Matplotlib toplot data, pystoi, pesq for computing reference metrics.
try:frompesqimportpesqfrompystoiimportstoifromtorchaudio.pipelinesimportSQUIM_OBJECTIVE,SQUIM_SUBJECTIVEexceptImportError:try:importgoogle.colab# noqa: F401print(""" To enable running this notebook in Google Colab, install nightly torch and torchaudio builds by adding the following code block to the top of the notebook before running it: !pip3 uninstall -y torch torchvision torchaudio !pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu !pip3 install pesq !pip3 install pystoi """)exceptException:passraiseimportmatplotlib.pyplotasplt
importtorchaudio.functionalasFfromIPython.displayimportAudiofromtorchaudio.utilsimportdownload_assetdefsi_snr(estimate,reference,epsilon=1e-8):estimate=estimate-estimate.mean()reference=reference-reference.mean()reference_pow=reference.pow(2).mean(axis=1,keepdim=True)mix_pow=(estimate*reference).mean(axis=1,keepdim=True)scale=mix_pow/(reference_pow+epsilon)reference=scale*referenceerror=estimate-referencereference_pow=reference.pow(2)error_pow=error.pow(2)reference_pow=reference_pow.mean(axis=1)error_pow=error_pow.mean(axis=1)si_snr=10*torch.log10(reference_pow)-10*torch.log10(error_pow)returnsi_snr.item()defplot(waveform,title,sample_rate=16000):wav_numpy=waveform.numpy()sample_size=waveform.shape[1]time_axis=torch.arange(0,sample_size)/sample_ratefigure,axes=plt.subplots(2,1)axes[0].plot(time_axis,wav_numpy[0],linewidth=1)axes[0].grid(True)axes[1].specgram(wav_numpy[0],Fs=sample_rate)figure.suptitle(title)
3. Load Speech and Noise Sample¶
SAMPLE_SPEECH=download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")SAMPLE_NOISE=download_asset("tutorial-assets/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav")
0%| | 0.00/156k [00:00<?, ?B/s]100%|##########| 156k/156k [00:00<00:00, 17.6MB/s]
WAVEFORM_SPEECH,SAMPLE_RATE_SPEECH=torchaudio.load(SAMPLE_SPEECH)WAVEFORM_NOISE,SAMPLE_RATE_NOISE=torchaudio.load(SAMPLE_NOISE)WAVEFORM_NOISE=WAVEFORM_NOISE[0:1,:]
Currently, Torchaudio-Squim model only supports 16000 Hz sampling rate.Resample the waveforms if necessary.
ifSAMPLE_RATE_SPEECH!=16000:WAVEFORM_SPEECH=F.resample(WAVEFORM_SPEECH,SAMPLE_RATE_SPEECH,16000)ifSAMPLE_RATE_NOISE!=16000:WAVEFORM_NOISE=F.resample(WAVEFORM_NOISE,SAMPLE_RATE_NOISE,16000)
Trim waveforms so that they have the same number of frames.
Play speech sample
Audio(WAVEFORM_SPEECH.numpy()[0],rate=16000)
Play noise sample
Audio(WAVEFORM_NOISE.numpy()[0],rate=16000)
4. Create distorted (noisy) speech samples¶
snr_dbs=torch.tensor([20,-5])WAVEFORM_DISTORTED=F.add_noise(WAVEFORM_SPEECH,WAVEFORM_NOISE,snr_dbs)
Play distorted speech with 20dB SNR
Audio(WAVEFORM_DISTORTED.numpy()[0],rate=16000)
Play distorted speech with -5dB SNR
Audio(WAVEFORM_DISTORTED.numpy()[1],rate=16000)
5. Visualize the waveforms¶
Visualize speech sample
plot(WAVEFORM_SPEECH,"Clean Speech")

Visualize noise sample
plot(WAVEFORM_NOISE,"Noise")

Visualize distorted speech with 20dB SNR
plot(WAVEFORM_DISTORTED[0:1],f"Distorted Speech with{snr_dbs[0]}dB SNR")

Visualize distorted speech with -5dB SNR
plot(WAVEFORM_DISTORTED[1:2],f"Distorted Speech with{snr_dbs[1]}dB SNR")

6. Predict Objective Metrics¶
Get the pre-trainedSquimObjective
model.
objective_model=SQUIM_OBJECTIVE.get_model()
0%| | 0.00/28.2M [00:00<?, ?B/s]100%|##########| 28.2M/28.2M [00:00<00:00, 383MB/s]
Compare model outputs with ground truths for distorted speech with 20dBSNR
stoi_hyp,pesq_hyp,si_sdr_hyp=objective_model(WAVEFORM_DISTORTED[0:1,:])print(f"Estimated metrics for distorted speech at{snr_dbs[0]}dB are\n")print(f"STOI:{stoi_hyp[0]}")print(f"PESQ:{pesq_hyp[0]}")print(f"SI-SDR:{si_sdr_hyp[0]}\n")pesq_ref=pesq(16000,WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[0].numpy(),mode="wb")stoi_ref=stoi(WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[0].numpy(),16000,extended=False)si_sdr_ref=si_snr(WAVEFORM_DISTORTED[0:1],WAVEFORM_SPEECH)print(f"Reference metrics for distorted speech at{snr_dbs[0]}dB are\n")print(f"STOI:{stoi_ref}")print(f"PESQ:{pesq_ref}")print(f"SI-SDR:{si_sdr_ref}")
Estimated metrics for distorted speech at 20dB areSTOI: 0.9610356092453003PESQ: 2.7801527976989746SI-SDR: 20.692630767822266Reference metrics for distorted speech at 20dB areSTOI: 0.9670831113894452PESQ: 2.7961528301239014SI-SDR: 19.998966217041016
Compare model outputs with ground truths for distorted speech with -5dBSNR
stoi_hyp,pesq_hyp,si_sdr_hyp=objective_model(WAVEFORM_DISTORTED[1:2,:])print(f"Estimated metrics for distorted speech at{snr_dbs[1]}dB are\n")print(f"STOI:{stoi_hyp[0]}")print(f"PESQ:{pesq_hyp[0]}")print(f"SI-SDR:{si_sdr_hyp[0]}\n")pesq_ref=pesq(16000,WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[1].numpy(),mode="wb")stoi_ref=stoi(WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[1].numpy(),16000,extended=False)si_sdr_ref=si_snr(WAVEFORM_DISTORTED[1:2],WAVEFORM_SPEECH)print(f"Reference metrics for distorted speech at{snr_dbs[1]}dB are\n")print(f"STOI:{stoi_ref}")print(f"PESQ:{pesq_ref}")print(f"SI-SDR:{si_sdr_ref}")
Estimated metrics for distorted speech at -5dB areSTOI: 0.5743248462677002PESQ: 1.1112866401672363SI-SDR: -6.248741626739502Reference metrics for distorted speech at -5dB areSTOI: 0.5848137931588825PESQ: 1.0803768634796143SI-SDR: -5.016279220581055
7. Predict Mean Opinion Scores (Subjective) Metric¶
Get the pre-trainedSquimSubjective
model.
subjective_model=SQUIM_SUBJECTIVE.get_model()
0%| | 0.00/360M [00:00<?, ?B/s] 10%|9 | 35.2M/360M [00:00<00:00, 369MB/s] 20%|#9 | 70.5M/360M [00:00<00:00, 351MB/s] 29%|##8 | 104M/360M [00:00<00:00, 339MB/s] 39%|###9 | 141M/360M [00:00<00:00, 355MB/s] 51%|##### | 183M/360M [00:00<00:00, 385MB/s] 63%|######2 | 226M/360M [00:00<00:00, 409MB/s] 75%|#######4 | 270M/360M [00:00<00:00, 425MB/s] 87%|########7 | 314M/360M [00:00<00:00, 436MB/s] 99%|#########9| 358M/360M [00:00<00:00, 444MB/s]100%|##########| 360M/360M [00:00<00:00, 409MB/s]
Load a non-matching reference (NMR)
NMR_SPEECH=download_asset("tutorial-assets/ctc-decoding/1688-142285-0007.wav")WAVEFORM_NMR,SAMPLE_RATE_NMR=torchaudio.load(NMR_SPEECH)ifSAMPLE_RATE_NMR!=16000:WAVEFORM_NMR=F.resample(WAVEFORM_NMR,SAMPLE_RATE_NMR,16000)
Compute MOS metric for distorted speech with 20dB SNR
mos=subjective_model(WAVEFORM_DISTORTED[0:1,:],WAVEFORM_NMR)print(f"Estimated MOS for distorted speech at{snr_dbs[0]}dB is MOS:{mos[0]}")
Estimated MOS for distorted speech at 20dB is MOS: 4.309267997741699
Compute MOS metric for distorted speech with -5dB SNR
mos=subjective_model(WAVEFORM_DISTORTED[1:2,:],WAVEFORM_NMR)print(f"Estimated MOS for distorted speech at{snr_dbs[1]}dB is MOS:{mos[0]}")
Estimated MOS for distorted speech at -5dB is MOS: 3.291804075241089
8. Comparison with ground truths and baselines¶
Visualizing the estimated metrics by theSquimObjective
andSquimSubjective
models can help users better understand how themodels can be applicable in real scenario. The graph below shows scatterplots of three different systems: MOSA-Net [1], AMSA [2], and theSquimObjective
model, where y axis represents the estimated STOI,PESQ, and Si-SDR scores, and x axis represents the corresponding groundtruth.

[1] Zezario, Ryandhimas E., Szu-Wei Fu, Fei Chen, Chiou-Shann Fuh,Hsin-Min Wang, and Yu Tsao. “Deep learning-based non-intrusivemulti-objective speech assessment model with cross-domain features.”IEEE/ACM Transactions on Audio, Speech, and Language Processing 31(2022): 54-70.
[2] Dong, Xuan, and Donald S. Williamson. “An attention enhancedmulti-task model for objective speech assessment in real-worldenvironments.” In ICASSP 2020-2020 IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP), pp. 911-915. IEEE,2020.
The graph below shows scatter plot of theSquimSubjective
model,where y axis represents the estimated MOS metric score, and x axisrepresents the corresponding ground truth.

Total running time of the script: ( 0 minutes 6.495 seconds)