Note

Clickhereto download the full example code

Torchaudio-Squim: Non-intrusive Speech Assessment in TorchAudio

Author:Anurag Kumar,ZhaohengNi

1. Overview

This tutorial shows uses of Torchaudio-Squim to estimate objective andsubjective metrics for assessment of speech quality and intelligibility.

TorchAudio-Squim enables speech assessment in Torchaudio. It providesinterface and pre-trained models to estimate various speech quality andintelligibility metrics. Currently, Torchaudio-Squim [1] supportsreference-free estimation 3 widely used objective metrics:

  • Wideband Perceptual Estimation of Speech Quality (PESQ) [2]

  • Short-Time Objective Intelligibility (STOI) [3]

  • Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [4]

It also supports estimation of subjective Mean Opinion Score (MOS) for agiven audio waveform using Non-Matching References [1, 5].

References

[1] Kumar, Anurag, et al. “TorchAudio-Squim: Reference-less SpeechQuality and Intelligibility measures in TorchAudio.” ICASSP 2023-2023IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). IEEE, 2023.

[2] I. Rec, “P.862.2: Wideband extension to recommendation P.862 for theassessment of wideband telephone networks and speech codecs,”International Telecommunication Union, CH–Geneva, 2005.

[3] Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2010,March). A short-time objective intelligibility measure fortime-frequency weighted noisy speech. In 2010 IEEE internationalconference on acoustics, speech and signal processing (pp. 4214-4217).IEEE.

[4] Le Roux, Jonathan, et al. “SDR–half-baked or well done?.” ICASSP2019-2019 IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP). IEEE, 2019.

[5] Manocha, Pranay, and Anurag Kumar. “Speech quality assessmentthrough MOS using non-matching references.” Interspeech, 2022.

importtorchimporttorchaudioprint(torch.__version__)print(torchaudio.__version__)
2.6.0.dev202411042.5.0.dev20241105

2. Preparation

First import the modules and define the helper functions.

We will need torch, torchaudio to use Torchaudio-squim, Matplotlib toplot data, pystoi, pesq for computing reference metrics.

try:frompesqimportpesqfrompystoiimportstoifromtorchaudio.pipelinesimportSQUIM_OBJECTIVE,SQUIM_SUBJECTIVEexceptImportError:try:importgoogle.colab# noqa: F401print("""            To enable running this notebook in Google Colab, install nightly            torch and torchaudio builds by adding the following code block to the top            of the notebook before running it:            !pip3 uninstall -y torch torchvision torchaudio            !pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu            !pip3 install pesq            !pip3 install pystoi            """)exceptException:passraiseimportmatplotlib.pyplotasplt
importtorchaudio.functionalasFfromIPython.displayimportAudiofromtorchaudio.utilsimportdownload_assetdefsi_snr(estimate,reference,epsilon=1e-8):estimate=estimate-estimate.mean()reference=reference-reference.mean()reference_pow=reference.pow(2).mean(axis=1,keepdim=True)mix_pow=(estimate*reference).mean(axis=1,keepdim=True)scale=mix_pow/(reference_pow+epsilon)reference=scale*referenceerror=estimate-referencereference_pow=reference.pow(2)error_pow=error.pow(2)reference_pow=reference_pow.mean(axis=1)error_pow=error_pow.mean(axis=1)si_snr=10*torch.log10(reference_pow)-10*torch.log10(error_pow)returnsi_snr.item()defplot(waveform,title,sample_rate=16000):wav_numpy=waveform.numpy()sample_size=waveform.shape[1]time_axis=torch.arange(0,sample_size)/sample_ratefigure,axes=plt.subplots(2,1)axes[0].plot(time_axis,wav_numpy[0],linewidth=1)axes[0].grid(True)axes[1].specgram(wav_numpy[0],Fs=sample_rate)figure.suptitle(title)

3. Load Speech and Noise Sample

SAMPLE_SPEECH=download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")SAMPLE_NOISE=download_asset("tutorial-assets/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav")
  0%|          | 0.00/156k [00:00<?, ?B/s]100%|##########| 156k/156k [00:00<00:00, 17.6MB/s]

Currently, Torchaudio-Squim model only supports 16000 Hz sampling rate.Resample the waveforms if necessary.

Trim waveforms so that they have the same number of frames.

Play speech sample

Audio(WAVEFORM_SPEECH.numpy()[0],rate=16000)


Play noise sample

Audio(WAVEFORM_NOISE.numpy()[0],rate=16000)


4. Create distorted (noisy) speech samples

Play distorted speech with 20dB SNR

Audio(WAVEFORM_DISTORTED.numpy()[0],rate=16000)


Play distorted speech with -5dB SNR

Audio(WAVEFORM_DISTORTED.numpy()[1],rate=16000)


5. Visualize the waveforms

Visualize speech sample

plot(WAVEFORM_SPEECH,"Clean Speech")
Clean Speech

Visualize noise sample

plot(WAVEFORM_NOISE,"Noise")
Noise

Visualize distorted speech with 20dB SNR

plot(WAVEFORM_DISTORTED[0:1],f"Distorted Speech with{snr_dbs[0]}dB SNR")
Distorted Speech with 20dB SNR

Visualize distorted speech with -5dB SNR

plot(WAVEFORM_DISTORTED[1:2],f"Distorted Speech with{snr_dbs[1]}dB SNR")
Distorted Speech with -5dB SNR

6. Predict Objective Metrics

Get the pre-trainedSquimObjectivemodel.

objective_model=SQUIM_OBJECTIVE.get_model()
  0%|          | 0.00/28.2M [00:00<?, ?B/s]100%|##########| 28.2M/28.2M [00:00<00:00, 383MB/s]

Compare model outputs with ground truths for distorted speech with 20dBSNR

stoi_hyp,pesq_hyp,si_sdr_hyp=objective_model(WAVEFORM_DISTORTED[0:1,:])print(f"Estimated metrics for distorted speech at{snr_dbs[0]}dB are\n")print(f"STOI:{stoi_hyp[0]}")print(f"PESQ:{pesq_hyp[0]}")print(f"SI-SDR:{si_sdr_hyp[0]}\n")pesq_ref=pesq(16000,WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[0].numpy(),mode="wb")stoi_ref=stoi(WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[0].numpy(),16000,extended=False)si_sdr_ref=si_snr(WAVEFORM_DISTORTED[0:1],WAVEFORM_SPEECH)print(f"Reference metrics for distorted speech at{snr_dbs[0]}dB are\n")print(f"STOI:{stoi_ref}")print(f"PESQ:{pesq_ref}")print(f"SI-SDR:{si_sdr_ref}")
Estimated metrics for distorted speech at 20dB areSTOI: 0.9610356092453003PESQ: 2.7801527976989746SI-SDR: 20.692630767822266Reference metrics for distorted speech at 20dB areSTOI: 0.9670831113894452PESQ: 2.7961528301239014SI-SDR: 19.998966217041016

Compare model outputs with ground truths for distorted speech with -5dBSNR

stoi_hyp,pesq_hyp,si_sdr_hyp=objective_model(WAVEFORM_DISTORTED[1:2,:])print(f"Estimated metrics for distorted speech at{snr_dbs[1]}dB are\n")print(f"STOI:{stoi_hyp[0]}")print(f"PESQ:{pesq_hyp[0]}")print(f"SI-SDR:{si_sdr_hyp[0]}\n")pesq_ref=pesq(16000,WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[1].numpy(),mode="wb")stoi_ref=stoi(WAVEFORM_SPEECH[0].numpy(),WAVEFORM_DISTORTED[1].numpy(),16000,extended=False)si_sdr_ref=si_snr(WAVEFORM_DISTORTED[1:2],WAVEFORM_SPEECH)print(f"Reference metrics for distorted speech at{snr_dbs[1]}dB are\n")print(f"STOI:{stoi_ref}")print(f"PESQ:{pesq_ref}")print(f"SI-SDR:{si_sdr_ref}")
Estimated metrics for distorted speech at -5dB areSTOI: 0.5743248462677002PESQ: 1.1112866401672363SI-SDR: -6.248741626739502Reference metrics for distorted speech at -5dB areSTOI: 0.5848137931588825PESQ: 1.0803768634796143SI-SDR: -5.016279220581055

7. Predict Mean Opinion Scores (Subjective) Metric

Get the pre-trainedSquimSubjective model.

subjective_model=SQUIM_SUBJECTIVE.get_model()
  0%|          | 0.00/360M [00:00<?, ?B/s] 10%|9         | 35.2M/360M [00:00<00:00, 369MB/s] 20%|#9        | 70.5M/360M [00:00<00:00, 351MB/s] 29%|##8       | 104M/360M [00:00<00:00, 339MB/s] 39%|###9      | 141M/360M [00:00<00:00, 355MB/s] 51%|#####     | 183M/360M [00:00<00:00, 385MB/s] 63%|######2   | 226M/360M [00:00<00:00, 409MB/s] 75%|#######4  | 270M/360M [00:00<00:00, 425MB/s] 87%|########7 | 314M/360M [00:00<00:00, 436MB/s] 99%|#########9| 358M/360M [00:00<00:00, 444MB/s]100%|##########| 360M/360M [00:00<00:00, 409MB/s]

Load a non-matching reference (NMR)

NMR_SPEECH=download_asset("tutorial-assets/ctc-decoding/1688-142285-0007.wav")WAVEFORM_NMR,SAMPLE_RATE_NMR=torchaudio.load(NMR_SPEECH)ifSAMPLE_RATE_NMR!=16000:WAVEFORM_NMR=F.resample(WAVEFORM_NMR,SAMPLE_RATE_NMR,16000)

Compute MOS metric for distorted speech with 20dB SNR

mos=subjective_model(WAVEFORM_DISTORTED[0:1,:],WAVEFORM_NMR)print(f"Estimated MOS for distorted speech at{snr_dbs[0]}dB is MOS:{mos[0]}")
Estimated MOS for distorted speech at 20dB is MOS: 4.309267997741699

Compute MOS metric for distorted speech with -5dB SNR

mos=subjective_model(WAVEFORM_DISTORTED[1:2,:],WAVEFORM_NMR)print(f"Estimated MOS for distorted speech at{snr_dbs[1]}dB is MOS:{mos[0]}")
Estimated MOS for distorted speech at -5dB is MOS: 3.291804075241089

8. Comparison with ground truths and baselines

Visualizing the estimated metrics by theSquimObjective andSquimSubjective models can help users better understand how themodels can be applicable in real scenario. The graph below shows scatterplots of three different systems: MOSA-Net [1], AMSA [2], and theSquimObjective model, where y axis represents the estimated STOI,PESQ, and Si-SDR scores, and x axis represents the corresponding groundtruth.

https://download.pytorch.org/torchaudio/tutorial-assets/objective_plot.png

[1] Zezario, Ryandhimas E., Szu-Wei Fu, Fei Chen, Chiou-Shann Fuh,Hsin-Min Wang, and Yu Tsao. “Deep learning-based non-intrusivemulti-objective speech assessment model with cross-domain features.”IEEE/ACM Transactions on Audio, Speech, and Language Processing 31(2022): 54-70.

[2] Dong, Xuan, and Donald S. Williamson. “An attention enhancedmulti-task model for objective speech assessment in real-worldenvironments.” In ICASSP 2020-2020 IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP), pp. 911-915. IEEE,2020.

The graph below shows scatter plot of theSquimSubjective model,where y axis represents the estimated MOS metric score, and x axisrepresents the corresponding ground truth.

https://download.pytorch.org/torchaudio/tutorial-assets/subjective_plot.png

Total running time of the script: ( 0 minutes 6.495 seconds)

Gallery generated by Sphinx-Gallery