Movatterモバイル変換


[0]ホーム

URL:


PyTorch-IgnitePyTorch-Ignite
PyTorch-Ignite logo

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

Get Started
New release: PyTorch-Ignite

Simple Engine and Event System

Trigger any handlers at any built-in and custom events.

from ignite.engineimport Engine, Eventstrainer=Engine(lambdaengine,batch: batch/2)@trainer.on(Events.ITERATION_COMPLETED(every=2))defprint_output(engine):print(engine.state.output)

Rich Handlers

Checkpointing, early stopping, profiling, parameter scheduling, learning rate finder, and more.

from ignite.engineimport Engine, Eventsfrom ignite.handlersimport ModelCheckpoint, EarlyStopping, PiecewiseLinearmodel= nn.Linear(3,3)trainer=Engine(lambdaengine,batch:None)# model checkpoint handlercheckpoint=ModelCheckpoint('/tmp/ckpts','training')trainer.add_event_handler(Events.EPOCH_COMPLETED(every=2), checkpoint, {'model': model})# early stopping handlerdefscore_function(engine):    val_loss= engine.state.metrics['acc']return val_losses=EarlyStopping(3, score_function, trainer)# Note: the handler is attached to an *Evaluator* (runs one epoch on validation dataset).evaluator.add_event_handler(Events.COMPLETED, es)# Piecewise linear parameter schedulerscheduler=PiecewiseLinear(optimizer,'lr', [(10,0.5), (20,0.45), (21,0.3), (30,0.1), (40,0.1)])trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

Distributed Training

Speed up the training on CPUs, GPUs, and TPUs.

import ignite.distributedas idistdeftraining(local_rank, *args, **kwargs):    dataloder_train= idist.auto_dataloader(dataset,...)    model=...    model= idist.auto_model(model)    optimizer=...    optimizer= idist.auto_optim(optimizer)backend='nccl'# or 'gloo', 'horovod', 'xla-tpu'with idist.Parallel(backend)as parallel:    parallel.run(training)

50+ metrics

Distributed ready out-of-the-box metrics to easily evaluate models.

from ignite.engineimport Enginefrom ignite.metricsimport Accuracytrainer=Engine(...)acc=Accuracy()acc.attach(trainer,'accuracy')state= engine.run(data)print(f"Accuracy:{state.metrics['accuracy']}")

Rich Integration with Experiment Managers

Tensorboard, MLFlow, WandB, Neptune, and more.

from ignite.engineimport Engine, Eventsfrom ignite.contrib.handlers.tensorboard_loggerimport TensorboardLoggertrainer=Engine(...)# Create a tensorboard loggerwithTensorboardLogger(log_dir="experiments/tb_logs")as tb_logger:# Attach the logger to the trainer to log training loss at each iteration    tb_logger.attach_output_handler(      trainer,event_name=Events.ITERATION_COMPLETED,tag="training",output_transform=lambdaloss: {"loss": loss}    )

Ecosystem

Project MONAI

MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem.

Code-Generator

Application to generate your training scripts with PyTorch-Ignite.

Nussl

A flexible source separation library in Python

See all projects

Follow Us on Twitter

Loading Twitter Timeline...

With the support of:

NumFOCUSQuansight LabsAmazon Web Services (AWS)Agenium Space
Support PyTorch-Ignite

[8]ページ先頭

©2009-2025 Movatter.jp