MariaDB
LangChain's MariaDB integration (langchain-mariadb) provides vector capabilities for working with MariaDB version 11.7.1 and above, distributed under the MIT license. Users can use the provided implementations as-is or customize them for specific needs.Key features include:
- Built-in vector similarity search
- Support for cosine and euclidean distance metrics
- Robust metadata filtering options
- Performance optimization through connection pooling
- Configurable table and column settings
Setup
Launch a MariaDB Docker container with:
!docker run--name mariadb-container-e MARIADB_ROOT_PASSWORD=langchain-e MARIADB_DATABASE=langchain-p3306:3306-d mariadb:11.7
Installing the Package
The package uses SQLAlchemy but works best with the MariaDB connector, which requires C/C++ components:
# Debian, Ubuntu
!sudo apt install libmariadb3 libmariadb-dev
# CentOS, RHEL, Rocky Linux
!sudo yum install MariaDB-shared MariaDB-devel
# Install Python connector
!pip install-U mariadb
Then installlangchain-mariadb
package
pip install-U langchain-mariadb
VectorStore works along with an LLM model, here usinglangchain-openai
as example.
pip install langchain-openai
export OPENAI_API_KEY=...
Initialization
from langchain_core.documentsimport Document
from langchain_mariadbimport MariaDBStore
from langchain_openaiimport OpenAIEmbeddings
# connection string
url=f"mariadb+mariadbconnector://myuser:mypassword@localhost/langchain"
# Initialize vector store
vectorstore= MariaDBStore(
embeddings=OpenAIEmbeddings(),
embedding_length=1536,
datasource=url,
collection_name="my_docs",
)
API Reference:Document |OpenAIEmbeddings
Manage vector store
Adding Data
You can add data as documents with metadata:
docs=[
Document(
page_content="there are cats in the pond",
metadata={"id":1,"location":"pond","topic":"animals"},
),
Document(
page_content="ducks are also found in the pond",
metadata={"id":2,"location":"pond","topic":"animals"},
),
# More documents...
]
vectorstore.add_documents(docs)
Or as plain text with optional metadata:
texts=[
"a sculpture exhibit is also at the museum",
"a new coffee shop opened on Main Street",
]
metadatas=[
{"id":6,"location":"museum","topic":"art"},
{"id":7,"location":"Main Street","topic":"food"},
]
vectorstore.add_texts(texts=texts, metadatas=metadatas)
Query vector store
# Basic similarity search
results= vectorstore.similarity_search("Hello", k=2)
# Search with metadata filtering
results= vectorstore.similarity_search("Hello",filter={"category":"greeting"})
Filter Options
The system supports various filtering operations on metadata:
- Equality: $eq
- Inequality: $ne
- Comparisons: $lt, $lte, $gt, $gte
- List operations: $in, $nin
- Text matching: $like, $nlike
- Logical operations: $and, $or, $not
Example:
# Search with simple filter
results= vectorstore.similarity_search(
"kitty", k=10,filter={"id":{"$in":[1,5,2,9]}}
)
# Search with multiple conditions (AND)
results= vectorstore.similarity_search(
"ducks",
k=10,
filter={"id":{"$in":[1,5,2,9]},"location":{"$in":["pond","market"]}},
)
Usage for retrieval-augmented generation
TODO: document example
API reference
See the repohere for more detail.
Related
- Vector storeconceptual guide
- Vector storehow-to guides