Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

Google AlloyDB for PostgreSQL

AlloyDB is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability. AlloyDB is 100% compatible with PostgreSQL. Extend your database application to build AI-powered experiences leveraging AlloyDB's Langchain integrations.

This notebook goes over how to useAlloyDB for PostgreSQL to store vector embeddings with theAlloyDBVectorStore class.

Learn more about the package onGitHub.

Open In Colab

Before you begin

To run this notebook, you will need to do the following:

🦜🔗 Library Installation

Install the integration library,langchain-google-alloydb-pg, and the library for the embedding service,langchain-google-vertexai.

%pip install--upgrade--quiet  langchain-google-alloydb-pg langchain-google-vertexai

Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.

# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython

# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)

🔐 Authentication

Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.

  • If you are using Colab to run this notebook, use the cell below and continue.
  • If you are using Vertex AI Workbench, check out the setup instructionshere.
from google.colabimport auth

auth.authenticate_user()

☁ Set Your Google Cloud Project

Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.

If you don't know your project ID, try the following:

# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.

PROJECT_ID="my-project-id"# @param {type:"string"}

# Set the project id
!gcloud configset project{PROJECT_ID}

Basic Usage

Set AlloyDB database values

Find your database values, in theAlloyDB Instances page.

# @title Set Your Values Here { display-mode: "form" }
REGION="us-central1"# @param {type: "string"}
CLUSTER="my-cluster"# @param {type: "string"}
INSTANCE="my-primary"# @param {type: "string"}
DATABASE="my-database"# @param {type: "string"}
TABLE_NAME="vector_store"# @param {type: "string"}

AlloyDBEngine Connection Pool

One of the requirements and arguments to establish AlloyDB as a vector store is aAlloyDBEngine object. TheAlloyDBEngine configures a connection pool to your AlloyDB database, enabling successful connections from your application and following industry best practices.

To create aAlloyDBEngine usingAlloyDBEngine.from_instance() you need to provide only 5 things:

  1. project_id : Project ID of the Google Cloud Project where the AlloyDB instance is located.
  2. region : Region where the AlloyDB instance is located.
  3. cluster: The name of the AlloyDB cluster.
  4. instance : The name of the AlloyDB instance.
  5. database : The name of the database to connect to on the AlloyDB instance.

By default,IAM database authentication will be used as the method of database authentication. This library uses the IAM principal belonging to theApplication Default Credentials (ADC) sourced from the environment.

Optionally,built-in database authentication using a username and password to access the AlloyDB database can also be used. Just provide the optionaluser andpassword arguments toAlloyDBEngine.from_instance():

  • user : Database user to use for built-in database authentication and login
  • password : Database password to use for built-in database authentication and login.

Note: This tutorial demonstrates the async interface. All async methods have corresponding sync methods.

from langchain_google_alloydb_pgimport AlloyDBEngine

engine=await AlloyDBEngine.afrom_instance(
project_id=PROJECT_ID,
region=REGION,
cluster=CLUSTER,
instance=INSTANCE,
database=DATABASE,
)

Initialize a table

TheAlloyDBVectorStore class requires a database table. TheAlloyDBEngine engine has a helper methodinit_vectorstore_table() that can be used to create a table with the proper schema for you.

await engine.ainit_vectorstore_table(
table_name=TABLE_NAME,
vector_size=768,# Vector size for VertexAI model(textembedding-gecko@latest)
)

Create an embedding class instance

You can use anyLangChain embeddings model.You may need to enable Vertex AI API to useVertexAIEmbeddings. We recommend setting the embedding model's version for production, learn more about theText embeddings models.

# enable Vertex AI API
!gcloud services enable aiplatform.googleapis.com
from langchain_google_vertexaiimport VertexAIEmbeddings

embedding= VertexAIEmbeddings(
model_name="textembedding-gecko@latest", project=PROJECT_ID
)
API Reference:VertexAIEmbeddings

Initialize a default AlloyDBVectorStore

from langchain_google_alloydb_pgimport AlloyDBVectorStore

store=await AlloyDBVectorStore.create(
engine=engine,
table_name=TABLE_NAME,
embedding_service=embedding,
)

Add texts

import uuid

all_texts=["Apples and oranges","Cars and airplanes","Pineapple","Train","Banana"]
metadatas=[{"len":len(t)}for tin all_texts]
ids=[str(uuid.uuid4())for _in all_texts]

await store.aadd_texts(all_texts, metadatas=metadatas, ids=ids)

Delete texts

await store.adelete([ids[1]])

Search for documents

query="I'd like a fruit."
docs=await store.asimilarity_search(query)
print(docs)

Search for documents by vector

query_vector= embedding.embed_query(query)
docs=await store.asimilarity_search_by_vector(query_vector, k=2)
print(docs)

Add a Index

Speed up vector search queries by applying a vector index. Learn more aboutvector indexes.

from langchain_google_alloydb_pg.indexesimport IVFFlatIndex

index= IVFFlatIndex()
await store.aapply_vector_index(index)

Re-index

await store.areindex()# Re-index using default index name

Remove an index

await store.adrop_vector_index()# Delete index using default name

Create a custom Vector Store

A Vector Store can take advantage of relational data to filter similarity searches.

Create a table with custom metadata columns.

from langchain_google_alloydb_pgimport Column

# Set table name
TABLE_NAME="vectorstore_custom"

await engine.ainit_vectorstore_table(
table_name=TABLE_NAME,
vector_size=768,# VertexAI model: textembedding-gecko@latest
metadata_columns=[Column("len","INTEGER")],
)


# Initialize AlloyDBVectorStore
custom_store=await AlloyDBVectorStore.create(
engine=engine,
table_name=TABLE_NAME,
embedding_service=embedding,
metadata_columns=["len"],
# Connect to a existing VectorStore by customizing the table schema:
# id_column="uuid",
# content_column="documents",
# embedding_column="vectors",
)

Search for documents with metadata filter

import uuid

# Add texts to the Vector Store
all_texts=["Apples and oranges","Cars and airplanes","Pineapple","Train","Banana"]
metadatas=[{"len":len(t)}for tin all_texts]
ids=[str(uuid.uuid4())for _in all_texts]
await store.aadd_texts(all_texts, metadatas=metadatas, ids=ids)

# Use filter on search
docs=await custom_store.asimilarity_search_by_vector(query_vector,filter="len >= 6")

print(docs)

Related


[8]ページ先頭

©2009-2025 Movatter.jp