Apache Cassandra
This page provides a quickstart for usingApache Cassandra® as a Vector Store.
Cassandra is a NoSQL, row-oriented, highly scalable and highly available database.Starting with version 5.0, the database ships withvector search capabilities.
Note: in addition to access to the database, an OpenAI API Key is required to run the full example.
Setup and general dependencies
Use of the integration requires the following Python package.
%pip install--upgrade--quiet langchain-community"cassio>=0.1.4"
Note: depending on your LangChain setup, you may need to install/upgrade other dependencies needed for this demo(specifically, recent versions ofdatasets
,openai
,pypdf
andtiktoken
are required, along withlangchain-community
).
import os
from getpassimport getpass
from datasetsimport(
load_dataset,
)
from langchain_community.document_loadersimport PyPDFLoader
from langchain_core.documentsimport Document
from langchain_core.output_parsersimport StrOutputParser
from langchain_core.promptsimport ChatPromptTemplate
from langchain_core.runnablesimport RunnablePassthrough
from langchain_openaiimport ChatOpenAI, OpenAIEmbeddings
from langchain_text_splittersimport RecursiveCharacterTextSplitter
if"OPENAI_API_KEY"notin os.environ:
os.environ["OPENAI_API_KEY"]= getpass("OPENAI_API_KEY = ")
embe= OpenAIEmbeddings()
Import the Vector Store
from langchain_community.vectorstoresimport Cassandra
Connection parameters
The Vector Store integration shown in this page can be used with Cassandra as well as other derived databases, such as Astra DB, which use the CQL (Cassandra Query Language) protocol.
DataStaxAstra DB is a managed serverless database built on Cassandra, offering the same interface and strengths.
Depending on whether you connect to a Cassandra cluster or to Astra DB through CQL, you will provide different parameters when creating the vector store object.
Connecting to a Cassandra cluster
You first need to create acassandra.cluster.Session
object, as described in theCassandra driver documentation. The details vary (e.g. with network settings and authentication), but this might be something like:
from cassandra.clusterimport Cluster
cluster= Cluster(["127.0.0.1"])
session= cluster.connect()
You can now set the session, along with your desired keyspace name, as a global CassIO parameter:
import cassio
CASSANDRA_KEYSPACE=input("CASSANDRA_KEYSPACE = ")
cassio.init(session=session, keyspace=CASSANDRA_KEYSPACE)
Now you can create the vector store:
vstore= Cassandra(
embedding=embe,
table_name="cassandra_vector_demo",
# session=None, keyspace=None # Uncomment on older versions of LangChain
)
Note: you can also pass your session and keyspace directly as parameters when creating the vector store. Using the globalcassio.init
setting, however, comes handy if your applications uses Cassandra in several ways (for instance, for vector store, chat memory and LLM response caching), as it allows to centralize credential and DB connection management in one place.
Connecting to Astra DB through CQL
In this case you initialize CassIO with the following connection parameters:
- the Database ID, e.g.
01234567-89ab-cdef-0123-456789abcdef
- the Token, e.g.
AstraCS:6gBhNmsk135....
(it must be a "Database Administrator" token) - Optionally a Keyspace name (if omitted, the default one for the database will be used)
ASTRA_DB_ID=input("ASTRA_DB_ID = ")
ASTRA_DB_APPLICATION_TOKEN= getpass("ASTRA_DB_APPLICATION_TOKEN = ")
desired_keyspace=input("ASTRA_DB_KEYSPACE (optional, can be left empty) = ")
if desired_keyspace:
ASTRA_DB_KEYSPACE= desired_keyspace
else:
ASTRA_DB_KEYSPACE=None
import cassio
cassio.init(
database_id=ASTRA_DB_ID,
token=ASTRA_DB_APPLICATION_TOKEN,
keyspace=ASTRA_DB_KEYSPACE,
)
Now you can create the vector store:
vstore= Cassandra(
embedding=embe,
table_name="cassandra_vector_demo",
# session=None, keyspace=None # Uncomment on older versions of LangChain
)
Load a dataset
Convert each entry in the source dataset into aDocument
, then write them into the vector store:
philo_dataset= load_dataset("datastax/philosopher-quotes")["train"]
docs=[]
for entryin philo_dataset:
metadata={"author": entry["author"]}
doc= Document(page_content=entry["quote"], metadata=metadata)
docs.append(doc)
inserted_ids= vstore.add_documents(docs)
print(f"\nInserted{len(inserted_ids)} documents.")
In the above,metadata
dictionaries are created from the source data and are part of theDocument
.
Add some more entries, this time withadd_texts
:
texts=["I think, therefore I am.","To the things themselves!"]
metadatas=[{"author":"descartes"},{"author":"husserl"}]
ids=["desc_01","huss_xy"]
inserted_ids_2= vstore.add_texts(texts=texts, metadatas=metadatas, ids=ids)
print(f"\nInserted{len(inserted_ids_2)} documents.")
Note: you may want to speed up the execution ofadd_texts
andadd_documents
by increasing the concurrency level forthese bulk operations - check out the methods'batch_size
parameterfor more details. Depending on the network and the client machine specifications, your best-performing choice of parameters may vary.
Run searches
This section demonstrates metadata filtering and getting the similarity scores back:
results= vstore.similarity_search("Our life is what we make of it", k=3)
for resin results:
print(f"*{res.page_content} [{res.metadata}]")
results_filtered= vstore.similarity_search(
"Our life is what we make of it",
k=3,
filter={"author":"plato"},
)
for resin results_filtered:
print(f"*{res.page_content} [{res.metadata}]")
results= vstore.similarity_search_with_score("Our life is what we make of it", k=3)
for res, scorein results:
print(f"* [SIM={score:3f}]{res.page_content} [{res.metadata}]")
MMR (Maximal-marginal-relevance) search
results= vstore.max_marginal_relevance_search(
"Our life is what we make of it",
k=3,
filter={"author":"aristotle"},
)
for resin results:
print(f"*{res.page_content} [{res.metadata}]")
Deleting stored documents
delete_1= vstore.delete(inserted_ids[:3])
print(f"all_succeed={delete_1}")# True, all documents deleted
delete_2= vstore.delete(inserted_ids[2:5])
print(f"some_succeeds={delete_2}")# True, though some IDs were gone already
A minimal RAG chain
The next cells will implement a simple RAG pipeline:
- download a sample PDF file and load it onto the store;
- create a RAG chain with LCEL (LangChain Expression Language), with the vector store at its heart;
- run the question-answering chain.
!curl-L \
"https://github.com/awesome-astra/datasets/blob/main/demo-resources/what-is-philosophy/what-is-philosophy.pdf?raw=true" \
-o"what-is-philosophy.pdf"
pdf_loader= PyPDFLoader("what-is-philosophy.pdf")
splitter= RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64)
docs_from_pdf= pdf_loader.load_and_split(text_splitter=splitter)
print(f"Documents from PDF:{len(docs_from_pdf)}.")
inserted_ids_from_pdf= vstore.add_documents(docs_from_pdf)
print(f"Inserted{len(inserted_ids_from_pdf)} documents.")
retriever= vstore.as_retriever(search_kwargs={"k":3})
philo_template="""
You are a philosopher that draws inspiration from great thinkers of the past
to craft well-thought answers to user questions. Use the provided context as the basis
for your answers and do not make up new reasoning paths - just mix-and-match what you are given.
Your answers must be concise and to the point, and refrain from answering about other topics than philosophy.
CONTEXT:
{context}
QUESTION: {question}
YOUR ANSWER:"""
philo_prompt= ChatPromptTemplate.from_template(philo_template)
llm= ChatOpenAI()
chain=(
{"context": retriever,"question": RunnablePassthrough()}
| philo_prompt
| llm
| StrOutputParser()
)
chain.invoke("How does Russel elaborate on Peirce's idea of the security blanket?")
For more, check out a complete RAG template using Astra DB through CQLhere.
Cleanup
the following essentially retrieves theSession
object from CassIO and runs a CQLDROP TABLE
statement with it:
(You will lose the data you stored in it.)
cassio.config.resolve_session().execute(
f"DROP TABLE{cassio.config.resolve_keyspace()}.cassandra_vector_demo;"
)
Learn more
For more information, extended quickstarts and additional usage examples, please visit theCassIO documentation for more on using the LangChainCassandra
vector store.
Attribution statement
Apache Cassandra, Cassandra and Apache are either registered trademarks or trademarks of theApache Software Foundation in the United States and/or other countries.
Related
- Vector storeconceptual guide
- Vector storehow-to guides