Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

BagelDB

BagelDB (Open Vector Database for AI), is like GitHub for AI data.It is a collaborative platform where users can create,share, and manage vector datasets. It can support private projects for independent developers,internal collaborations for enterprises, and public contributions for data DAOs.

Installation and Setup

pip install betabageldb langchain-community

Create VectorStore from texts

from langchain_community.vectorstoresimport Bagel

texts=["hello bagel","hello langchain","I love salad","my car","a dog"]
# create cluster and add texts
cluster= Bagel.from_texts(cluster_name="testing", texts=texts)
API Reference:Bagel
# similarity search
cluster.similarity_search("bagel", k=3)
[Document(page_content='hello bagel', metadata={}),
Document(page_content='my car', metadata={}),
Document(page_content='I love salad', metadata={})]
# the score is a distance metric, so lower is better
cluster.similarity_search_with_score("bagel", k=3)
[(Document(page_content='hello bagel', metadata={}), 0.27392977476119995),
(Document(page_content='my car', metadata={}), 1.4783176183700562),
(Document(page_content='I love salad', metadata={}), 1.5342965126037598)]
# delete the cluster
cluster.delete_cluster()

Create VectorStore from docs

from langchain_community.document_loadersimport TextLoader
from langchain_text_splittersimport CharacterTextSplitter

loader= TextLoader("../../how_to/state_of_the_union.txt")
documents= loader.load()
text_splitter= CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs= text_splitter.split_documents(documents)[:10]
# create cluster with docs
cluster= Bagel.from_documents(cluster_name="testing_with_docs", documents=docs)
# similarity search
query="What did the president say about Ketanji Brown Jackson"
docs= cluster.similarity_search(query)
print(docs[0].page_content[:102])
Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the

Get all text/doc from Cluster

texts=["hello bagel","this is langchain"]
cluster= Bagel.from_texts(cluster_name="testing", texts=texts)
cluster_data= cluster.get()
# all keys
cluster_data.keys()
dict_keys(['ids', 'embeddings', 'metadatas', 'documents'])
# all values and keys
cluster_data
{'ids': ['578c6d24-3763-11ee-a8ab-b7b7b34f99ba',
'578c6d25-3763-11ee-a8ab-b7b7b34f99ba',
'fb2fc7d8-3762-11ee-a8ab-b7b7b34f99ba',
'fb2fc7d9-3762-11ee-a8ab-b7b7b34f99ba',
'6b40881a-3762-11ee-a8ab-b7b7b34f99ba',
'6b40881b-3762-11ee-a8ab-b7b7b34f99ba',
'581e691e-3762-11ee-a8ab-b7b7b34f99ba',
'581e691f-3762-11ee-a8ab-b7b7b34f99ba'],
'embeddings': None,
'metadatas': [{}, {}, {}, {}, {}, {}, {}, {}],
'documents': ['hello bagel',
'this is langchain',
'hello bagel',
'this is langchain',
'hello bagel',
'this is langchain',
'hello bagel',
'this is langchain']}
cluster.delete_cluster()

Create cluster with metadata & filter using metadata

texts=["hello bagel","this is langchain"]
metadatas=[{"source":"notion"},{"source":"google"}]

cluster= Bagel.from_texts(cluster_name="testing", texts=texts, metadatas=metadatas)
cluster.similarity_search_with_score("hello bagel", where={"source":"notion"})
[(Document(page_content='hello bagel', metadata={'source': 'notion'}), 0.0)]
# delete the cluster
cluster.delete_cluster()

Related


[8]ページ先頭

©2009-2025 Movatter.jp