Apache Doris
Apache Doris is a modern data warehouse for real-time analytics.It delivers lightning-fast analytics on real-time data at scale.
Usually
Apache Doris
is categorized into OLAP, and it has showed excellent performance inClickBench — a Benchmark For Analytical DBMS. Since it has a super-fast vectorized execution engine, it could also be used as a fast vectordb.
You'll need to installlangchain-community
withpip install -qU langchain-community
to use this integration
Here we'll show how to use the Apache Doris Vector Store.
Setup
%pip install--upgrade--quiet pymysql
Setupdate_vectordb = False
at the beginning. If there is no docs updated, then we don't need to rebuild the embeddings of docs
!pip install sqlalchemy
!pip install langchain
from langchain.chainsimport RetrievalQA
from langchain_community.document_loadersimport(
DirectoryLoader,
UnstructuredMarkdownLoader,
)
from langchain_community.vectorstores.apache_dorisimport(
ApacheDoris,
ApacheDorisSettings,
)
from langchain_openaiimport OpenAI, OpenAIEmbeddings
from langchain_text_splittersimport TokenTextSplitter
update_vectordb=False
Load docs and split them into tokens
Load all markdown files under thedocs
directory
for Apache Doris documents, you can clone repo fromhttps://github.com/apache/doris, and there isdocs
directory in it.
loader= DirectoryLoader(
"./docs", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader
)
documents= loader.load()
Split docs into tokens, and setupdate_vectordb = True
because there are new docs/tokens.
# load text splitter and split docs into snippets of text
text_splitter= TokenTextSplitter(chunk_size=400, chunk_overlap=50)
split_docs= text_splitter.split_documents(documents)
# tell vectordb to update text embeddings
update_vectordb=True
split_docs[-20]
print("# docs = %d, # splits = %d" % (len(documents), len(split_docs)))
Create vectordb instance
Use Apache Doris as vectordb
defgen_apache_doris(update_vectordb, embeddings, settings):
if update_vectordb:
docsearch= ApacheDoris.from_documents(split_docs, embeddings, config=settings)
else:
docsearch= ApacheDoris(embeddings, settings)
return docsearch
Convert tokens into embeddings and put them into vectordb
Here we use Apache Doris as vectordb, you can configure Apache Doris instance viaApacheDorisSettings
.
Configuring Apache Doris instance is pretty much like configuring mysql instance. You need to specify:
- host/port
- username(default: 'root')
- password(default: '')
- database(default: 'default')
- table(default: 'langchain')
import os
from getpassimport getpass
if"OPENAI_API_KEY"notin os.environ:
os.environ["OPENAI_API_KEY"]= getpass()
update_vectordb=True
embeddings= OpenAIEmbeddings()
# configure Apache Doris settings(host/port/user/pw/db)
settings= ApacheDorisSettings()
settings.port=9030
settings.host="172.30.34.130"
settings.username="root"
settings.password=""
settings.database="langchain"
docsearch= gen_apache_doris(update_vectordb, embeddings, settings)
print(docsearch)
update_vectordb=False
Build QA and ask question to it
llm= OpenAI()
qa= RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()
)
query="what is apache doris"
resp= qa.run(query)
print(resp)
Related
- Vector storeconceptual guide
- Vector storehow-to guides