Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

OpenVINO

OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. The OpenVINO™ Runtime supports various hardwaredevices including x86 and ARM CPUs, and Intel GPUs. It can help to boost deep learning performance in Computer Vision, Automatic Speech Recognition, Natural Language Processing and other common tasks.

Hugging Face embedding model can be supported by OpenVINO throughOpenVINOEmbeddings class. If you have an Intel GPU, you can specifymodel_kwargs={"device": "GPU"} to run inference on it.

%pip install--upgrade-strategy eager"optimum[openvino,nncf]"--quiet
Note: you may need to restart the kernel to use updated packages.
from langchain_community.embeddingsimport OpenVINOEmbeddings
API Reference:OpenVINOEmbeddings
model_name="sentence-transformers/all-mpnet-base-v2"
model_kwargs={"device":"CPU"}
encode_kwargs={"mean_pooling":True,"normalize_embeddings":True}

ov_embeddings= OpenVINOEmbeddings(
model_name_or_path=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
text="This is a test document."
query_result= ov_embeddings.embed_query(text)
query_result[:3]
[-0.048951778560876846, -0.03986183926463127, -0.02156277745962143]
doc_result= ov_embeddings.embed_documents([text])

Export IR model

It is possible to export your embedding model to the OpenVINO IR format withOVModelForFeatureExtraction, and load the model from local folder.

from pathlibimport Path

ov_model_dir="all-mpnet-base-v2-ov"
ifnot Path(ov_model_dir).exists():
ov_embeddings.save_model(ov_model_dir)
ov_embeddings= OpenVINOEmbeddings(
model_name_or_path=ov_model_dir,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
Compiling the model to CPU ...

BGE with OpenVINO

We can also access BGE embedding models via theOpenVINOBgeEmbeddings class with OpenVINO.

from langchain_community.embeddingsimport OpenVINOBgeEmbeddings

model_name="BAAI/bge-small-en"
model_kwargs={"device":"CPU"}
encode_kwargs={"normalize_embeddings":True}
ov_embeddings= OpenVINOBgeEmbeddings(
model_name_or_path=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
API Reference:OpenVINOBgeEmbeddings
embedding= ov_embeddings.embed_query("hi this is harrison")
len(embedding)
384

For more information refer to:

Related


[8]ページ先頭

©2009-2025 Movatter.jp