MosaicML
MosaicML offers a managed inference service. You can either use a variety of open-source models, or deploy your own.
This example goes over how to use LangChain to interact withMosaicML
Inference for text embedding.
# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain
from getpassimport getpass
MOSAICML_API_TOKEN= getpass()
import os
os.environ["MOSAICML_API_TOKEN"]= MOSAICML_API_TOKEN
from langchain_community.embeddingsimport MosaicMLInstructorEmbeddings
API Reference:MosaicMLInstructorEmbeddings
embeddings= MosaicMLInstructorEmbeddings(
query_instruction="Represent the query for retrieval: "
)
query_text="This is a test query."
query_result= embeddings.embed_query(query_text)
document_text="This is a test document."
document_result= embeddings.embed_documents([document_text])
import numpyas np
query_numpy= np.array(query_result)
document_numpy= np.array(document_result[0])
similarity= np.dot(query_numpy, document_numpy)/(
np.linalg.norm(query_numpy)* np.linalg.norm(document_numpy)
)
print(f"Cosine similarity between document and query:{similarity}")
Related
- Embedding modelconceptual guide
- Embedding modelhow-to guides