MiniMax
MiniMax offers an embeddings service.
This example goes over how to use LangChain to interact with MiniMax Inference for text embedding.
import os
os.environ["MINIMAX_GROUP_ID"]="MINIMAX_GROUP_ID"
os.environ["MINIMAX_API_KEY"]="MINIMAX_API_KEY"
from langchain_community.embeddingsimport MiniMaxEmbeddings
API Reference:MiniMaxEmbeddings
embeddings= MiniMaxEmbeddings()
query_text="This is a test query."
query_result= embeddings.embed_query(query_text)
document_text="This is a test document."
document_result= embeddings.embed_documents([document_text])
import numpyas np
query_numpy= np.array(query_result)
document_numpy= np.array(document_result[0])
similarity= np.dot(query_numpy, document_numpy)/(
np.linalg.norm(query_numpy)* np.linalg.norm(document_numpy)
)
print(f"Cosine similarity between document and query:{similarity}")
Cosine similarity between document and query: 0.1573236279277012
Related
- Embedding modelconceptual guide
- Embedding modelhow-to guides