Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

Hugging Face

Let's load the Hugging Face Embedding class.

%pip install--upgrade--quiet  langchain langchain-huggingface sentence_transformers
from langchain_huggingface.embeddingsimport HuggingFaceEmbeddings
API Reference:HuggingFaceEmbeddings
embeddings= HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
text="This is a test document."
query_result= embeddings.embed_query(text)
query_result[:3]
[-0.04895168915390968, -0.03986193612217903, -0.021562768146395683]
doc_result= embeddings.embed_documents([text])

Hugging Face Inference Providers

We can also access embedding models via theInference Providers, which let's us use open source models on scalable serverless infrastructure.

First, we need to get a read-only API key fromHugging Face.

from getpassimport getpass

huggingfacehub_api_token= getpass()

Now we can use theHuggingFaceInferenceAPIEmbeddings class to run open source embedding models viaInference Providers.

from langchain_huggingfaceimport HuggingFaceInferenceAPIEmbeddings

embeddings= HuggingFaceInferenceAPIEmbeddings(
api_key=huggingfacehub_api_token,
model_name="sentence-transformers/all-MiniLM-l6-v2",
)

query_result= embeddings.embed_query(text)
query_result[:3]
[-0.038338541984558105, 0.1234646737575531, -0.028642963618040085]

Hugging Face Hub

We can also generate embeddings locally via the Hugging Face Hub package, which requires us to installhuggingface_hub

!pip install huggingface_hub
from langchain_huggingface.embeddingsimport HuggingFaceEndpointEmbeddings
embeddings= HuggingFaceEndpointEmbeddings()
text="This is a test document."
query_result= embeddings.embed_query(text)
query_result[:3]

Related


[8]ページ先頭

©2009-2025 Movatter.jp