Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

Elasticsearch

Walkthrough of how to generate embeddings using a hosted embedding model in Elasticsearch

The easiest way to instantiate theElasticsearchEmbeddings class it either

  • using thefrom_credentials constructor if you are using Elastic Cloud
  • or using thefrom_es_connection constructor with any Elasticsearch cluster
!pip-q install langchain-elasticsearch
from langchain_elasticsearchimport ElasticsearchEmbeddings
# Define the model ID
model_id="your_model_id"

Testing withfrom_credentials

This required an Elastic Cloudcloud_id

# Instantiate ElasticsearchEmbeddings using credentials
embeddings= ElasticsearchEmbeddings.from_credentials(
model_id,
es_cloud_id="your_cloud_id",
es_user="your_user",
es_password="your_password",
)
# Create embeddings for multiple documents
documents=[
"This is an example document.",
"Another example document to generate embeddings for.",
]
document_embeddings= embeddings.embed_documents(documents)
# Print document embeddings
for i, embeddinginenumerate(document_embeddings):
print(f"Embedding for document{i+1}:{embedding}")
# Create an embedding for a single query
query="This is a single query."
query_embedding= embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query:{query_embedding}")

Testing with Existing Elasticsearch client connection

This can be used with any Elasticsearch deployment

# Create Elasticsearch connection
from elasticsearchimport Elasticsearch

es_connection= Elasticsearch(
hosts=["https://es_cluster_url:port"], basic_auth=("user","password")
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings= ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
# Create embeddings for multiple documents
documents=[
"This is an example document.",
"Another example document to generate embeddings for.",
]
document_embeddings= embeddings.embed_documents(documents)
# Print document embeddings
for i, embeddinginenumerate(document_embeddings):
print(f"Embedding for document{i+1}:{embedding}")
# Create an embedding for a single query
query="This is a single query."
query_embedding= embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query:{query_embedding}")

Related


[8]ページ先頭

©2009-2025 Movatter.jp