Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

AwaDB

AwaDB is an AI Native database for the search and storage of embedding vectors used by LLM Applications.

This notebook explains how to useAwaEmbeddings in LangChain.

# pip install awadb

import the library

from langchain_community.embeddingsimport AwaEmbeddings
API Reference:AwaEmbeddings
Embedding= AwaEmbeddings()

Set embedding model

Users can useEmbedding.set_model() to specify the embedding model.
The input of this function is a string which represents the model's name.
The list of currently supported models can be obtainedhere \ \

Thedefault model isall-mpnet-base-v2, it can be used without setting.

text="our embedding test"

Embedding.set_model("all-mpnet-base-v2")
res_query= Embedding.embed_query("The test information")
res_document= Embedding.embed_documents(["test1","another test"])

Related


[8]ページ先頭

©2009-2025 Movatter.jp