Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open on GitHub

ModelScope

ModelScope is a big repository of the models and datasets.

This page covers how to use the modelscope ecosystem within LangChain.It is broken into two parts: installation and setup, and then references to specific modelscope wrappers.

Installation

pip install -U langchain-modelscope-integration

Head toModelScope to sign up to ModelScope and generate anSDK token. Once you've done this set theMODELSCOPE_SDK_TOKEN environment variable:

export MODELSCOPE_SDK_TOKEN=<your_sdk_token>

Chat Models

ModelScopeChatEndpoint class exposes chat models from ModelScope. See available modelshere.

from langchain_modelscopeimport ModelScopeChatEndpoint

llm= ModelScopeChatEndpoint(model="Qwen/Qwen2.5-Coder-32B-Instruct")
llm.invoke("Sing a ballad of LangChain.")

Embeddings

ModelScopeEmbeddings class exposes embeddings from ModelScope.

from langchain_modelscopeimport ModelScopeEmbeddings

embeddings= ModelScopeEmbeddings(model_id="damo/nlp_corom_sentence-embedding_english-base")
embeddings.embed_query("What is the meaning of life?")

LLMs

ModelScopeLLM class exposes LLMs from ModelScope.

from langchain_modelscopeimport ModelScopeLLM

llm= ModelScopeLLM(model="Qwen/Qwen2.5-Coder-32B-Instruct")
llm.invoke("The meaning of life is")

[8]ページ先頭

©2009-2025 Movatter.jp