Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open on GitHub

Johnsnowlabs

Gain access to thejohnsnowlabs ecosystem of enterprise NLP librarieswith over 21.000 enterprise NLP models in over 200 languages with the open sourcejohnsnowlabs library.For all 24.000+ models, see theJohn Snow Labs Model Models Hub

Installation and Setup

pip install johnsnowlabs

To [install enterprise features](https://nlp.johnsnowlabs.com/docs/en/jsl/install_licensed_quick, run:

# for more details see https://nlp.johnsnowlabs.com/docs/en/jsl/install_licensed_quick
nlp.install()

You can embed your queries and documents with eithergpu,cpu,apple_silicon,aarch based optimized binaries.By default cpu binaries are used.Once a session is started, you must restart your notebook to switch between GPU or CPU, or changes will not take effect.

Embed Query with CPU:

document="foo bar"
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert')
output= embedding.embed_query(document)

Embed Query with GPU:

document="foo bar"
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','gpu')
output= embedding.embed_query(document)

Embed Query with Apple Silicon (M1,M2,etc..):

documents=["foo bar",'bar foo']
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','apple_silicon')
output= embedding.embed_query(document)

Embed Query with AARCH:

documents=["foo bar",'bar foo']
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','aarch')
output= embedding.embed_query(document)

Embed Document with CPU:

documents=["foo bar",'bar foo']
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','gpu')
output= embedding.embed_documents(documents)

Embed Document with GPU:

documents=["foo bar",'bar foo']
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','gpu')
output= embedding.embed_documents(documents)

Embed Document with Apple Silicon (M1,M2,etc..):


```python
documents=["foo bar",'bar foo']
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','apple_silicon')
output= embedding.embed_documents(documents)

Embed Document with AARCH:


```python
documents=["foo bar",'bar foo']
embedding= JohnSnowLabsEmbeddings('embed_sentence.bert','aarch')
output= embedding.embed_documents(documents)

Models are loaded withnlp.load and spark session is started withnlp.start() under the hood.


[8]ページ先頭

©2009-2025 Movatter.jp