Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

LarkSuite (FeiShu)

LarkSuite is an enterprise collaboration platform developed by ByteDance.

This notebook covers how to load data from theLarkSuite REST API into a format that can be ingested into LangChain, along with example usage for text summarization.

The LarkSuite API requires an access token (tenant_access_token or user_access_token), checkoutLarkSuite open platform document for API details.

from getpassimport getpass

from langchain_community.document_loaders.larksuiteimport(
LarkSuiteDocLoader,
LarkSuiteWikiLoader,
)

DOMAIN=input("larksuite domain")
ACCESS_TOKEN= getpass("larksuite tenant_access_token or user_access_token")
DOCUMENT_ID=input("larksuite document id")

Load From Document

from pprintimport pprint

larksuite_loader= LarkSuiteDocLoader(DOMAIN, ACCESS_TOKEN, DOCUMENT_ID)
docs= larksuite_loader.load()

pprint(docs)
[Document(page_content='Test Doc\nThis is a Test Doc\n\n1\n2\n3\n\n', metadata={'document_id': 'V76kdbd2HoBbYJxdiNNccajunPf', 'revision_id': 11, 'title': 'Test Doc'})]

Load From Wiki

from pprintimport pprint

DOCUMENT_ID=input("larksuite wiki id")
larksuite_loader= LarkSuiteWikiLoader(DOMAIN, ACCESS_TOKEN, DOCUMENT_ID)
docs= larksuite_loader.load()

pprint(docs)
[Document(page_content='Test doc\nThis is a test wiki doc.\n', metadata={'document_id': 'TxOKdtMWaoSTDLxYS4ZcdEI7nwc', 'revision_id': 15, 'title': 'Test doc'})]
# see https://python.langchain.com/docs/use_cases/summarization for more details
from langchain.chains.summarizeimport load_summarize_chain
from langchain_community.llms.fakeimport FakeListLLM

llm= FakeListLLM()
chain= load_summarize_chain(llm, chain_type="map_reduce")
chain.run(docs)

Related


[8]ページ先頭

©2009-2025 Movatter.jp