Google Drive
Google Drive is a file storage and synchronization service developed by Google.
This notebook covers how to load documents fromGoogle Drive
. Currently, onlyGoogle Docs
are supported.
Prerequisites
- Create a Google Cloud project or use an existing project
- Enable theGoogle Drive API
- Authorize credentials for desktop app
pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib
🧑 Instructions for ingesting your Google Docs data
Set the environmental variableGOOGLE_APPLICATION_CREDENTIALS
to an empty string (""
).
By default, theGoogleDriveLoader
expects thecredentials.json
file to be located at~/.credentials/credentials.json
, but this is configurable using thecredentials_path
keyword argument. Same thing withtoken.json
- default path:~/.credentials/token.json
, constructor param:token_path
.
The first time you use GoogleDriveLoader, you will be displayed with the consent screen in your browser for user authentication. After authentication,token.json
will be created automatically at the provided or the default path. Also, if there is already atoken.json
at that path, then you will not be prompted for authentication.
GoogleDriveLoader
can load from a list of Google Docs document ids or a folder id. You can obtain your folder and document id from the URL:
- Folder:https://drive.google.com/drive/u/0/folders/1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5 -> folder id is
"1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5"
- Document:https://docs.google.com/document/d/1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw/edit -> document id is
"1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw"
%pip install--upgrade--quiet langchain-google-community[drive]
from langchain_google_communityimport GoogleDriveLoader
loader= GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
token_path="/path/where/you/want/token/to/be/created/google_token.json",
# Optional: configure whether to recursively fetch files from subfolders. Defaults to False.
recursive=False,
)
docs= loader.load()
When you pass afolder_id
by default all files of type document, sheet and pdf are loaded. You can modify this behaviour by passing afile_types
argument
loader= GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
file_types=["document","sheet"],
recursive=False,
)
Passing in Optional File Loaders
When processing files other than Google Docs and Google Sheets, it can be helpful to pass an optional file loader toGoogleDriveLoader
. If you pass in a file loader, that file loader will be used on documents that do not have a Google Docs or Google Sheets MIME type. Here is an example of how to load an Excel document from Google Drive using a file loader.
from langchain_community.document_loadersimport UnstructuredFileIOLoader
from langchain_google_communityimport GoogleDriveLoader
file_id="1x9WBtFPWMEAdjcJzPScRsjpjQvpSo_kz"
loader= GoogleDriveLoader(
file_ids=[file_id],
file_loader_cls=UnstructuredFileIOLoader,
file_loader_kwargs={"mode":"elements"},
)
docs= loader.load()
docs[0]
You can also process a folder with a mix of files and Google Docs/Sheets using the following pattern:
folder_id="1asMOHY1BqBS84JcRbOag5LOJac74gpmD"
loader= GoogleDriveLoader(
folder_id=folder_id,
file_loader_cls=UnstructuredFileIOLoader,
file_loader_kwargs={"mode":"elements"},
)
docs= loader.load()
docs[0]
Extended usage
An external (unofficial) component can manage the complexity of Google Drive :langchain-googledrive
It's compatible with the ̀langchain_community.document_loaders.GoogleDriveLoader
and can be usedin its place.
To be compatible with containers, the authentication uses an environment variablèGOOGLE_ACCOUNT_FILE
to credential file (for user or service).
%pip install--upgrade--quiet langchain-googledrive
folder_id="root"
# folder_id='1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5'
# Use the advanced version.
from langchain_googledrive.document_loadersimport GoogleDriveLoader
loader= GoogleDriveLoader(
folder_id=folder_id,
recursive=False,
num_results=2,# Maximum number of file to load
)
By default, all files with these mime-type can be converted toDocument
.
- text/text
- text/plain
- text/html
- text/csv
- text/markdown
- image/png
- image/jpeg
- application/epub+zip
- application/pdf
- application/rtf
- application/vnd.google-apps.document (GDoc)
- application/vnd.google-apps.presentation (GSlide)
- application/vnd.google-apps.spreadsheet (GSheet)
- application/vnd.google.colaboratory (Notebook colab)
- application/vnd.openxmlformats-officedocument.presentationml.presentation (PPTX)
- application/vnd.openxmlformats-officedocument.wordprocessingml.document (DOCX)
It's possible to update or customize this. See the documentation ofGDriveLoader
.
But, the corresponding packages must be installed.
%pip install--upgrade--quiet unstructured
for docin loader.load():
print("---")
print(doc.page_content.strip()[:60]+"...")
Loading auth Identities
Authorized identities for each file ingested by Google Drive Loader can be loaded along with metadata per Document.
from langchain_google_communityimport GoogleDriveLoader
loader= GoogleDriveLoader(
folder_id=folder_id,
load_auth=True,
# Optional: configure whether to load authorized identities for each Document.
)
doc= loader.load()
You can pass load_auth=True, to add Google Drive document access identities to metadata.
doc[0].metadata
Loading extended metadata
Following extra fields can also be fetched within metadata of each Document:
- full_path - Full path of the file/s in google drive.
- owner - owner of the file/s.
- size - size of the file/s.
from langchain_google_communityimport GoogleDriveLoader
loader= GoogleDriveLoader(
folder_id=folder_id,
load_extended_matadata=True,
# Optional: configure whether to load extended metadata for each Document.
)
doc= loader.load()
You can pass load_extended_matadata=True, to add Google Drive document extended details to metadata.
doc[0].metadata
Customize the search pattern
All parameter compatible with Googlelist()
API can be set.
To specify the new pattern of the Google request, you can use aPromptTemplate()
.The variables for the prompt can be set withkwargs
in the constructor.Some pre-formated request are proposed (use{query}
,{folder_id}
and/or{mime_type}
):
You can customize the criteria to select the files. A set of predefined filter are proposed:
template | description |
---|---|
gdrive-all-in-folder | Return all compatible files from afolder_id |
gdrive-query | Searchquery in all drives |
gdrive-by-name | Search file with namequery |
gdrive-query-in-folder | Searchquery infolder_id (and sub-folders ifrecursive=true ) |
gdrive-mime-type | Search a specificmime_type |
gdrive-mime-type-in-folder | Search a specificmime_type infolder_id |
gdrive-query-with-mime-type | Searchquery with a specificmime_type |
gdrive-query-with-mime-type-and-folder | Searchquery with a specificmime_type and infolder_id |
loader= GoogleDriveLoader(
folder_id=folder_id,
recursive=False,
template="gdrive-query",# Default template to use
query="machine learning",
num_results=2,# Maximum number of file to load
supportsAllDrives=False,# GDrive `list()` parameter
)
for docin loader.load():
print("---")
print(doc.page_content.strip()[:60]+"...")
You can customize your pattern.
from langchain_core.prompts.promptimport PromptTemplate
loader= GoogleDriveLoader(
folder_id=folder_id,
recursive=False,
template=PromptTemplate(
input_variables=["query","query_name"],
template="fullText contains '{query}' and name contains '{query_name}' and trashed=false",
),# Default template to use
query="machine learning",
query_name="ML",
num_results=2,# Maximum number of file to load
)
for docin loader.load():
print("---")
print(doc.page_content.strip()[:60]+"...")
The conversion can manage in Markdown format:
- bullet
- link
- table
- titles
Set the attributreturn_link
toTrue
to export links.
Modes for GSlide and GSheet
The parameter mode accepts different values:
- "document": return the body of each document
- "snippets": return the description of each file (set in metadata of Google Drive files).
The parametergslide_mode
accepts different values:
- "single" : one document with <PAGE BREAK>
- "slide" : one document by slide
- "elements" : one document for each elements.
loader= GoogleDriveLoader(
template="gdrive-mime-type",
mime_type="application/vnd.google-apps.presentation",# Only GSlide files
gslide_mode="slide",
num_results=2,# Maximum number of file to load
)
for docin loader.load():
print("---")
print(doc.page_content.strip()[:60]+"...")
The parametergsheet_mode
accepts different values:
"single"
: Generate one document by line"elements"
: one document with markdown array and <PAGE BREAK> tags.
loader= GoogleDriveLoader(
template="gdrive-mime-type",
mime_type="application/vnd.google-apps.spreadsheet",# Only GSheet files
gsheet_mode="elements",
num_results=2,# Maximum number of file to load
)
for docin loader.load():
print("---")
print(doc.page_content.strip()[:60]+"...")
Advanced usage
All Google File have a 'description' in the metadata. This field can be used to memorize a summary of the document or others indexed tags (See methodlazy_update_description_with_summary()
).
If you use themode="snippet"
, only the description will be used for the body. Else, themetadata['summary']
has the field.
Sometime, a specific filter can be used to extract some information from the filename, to select some files with specific criteria. You can use a filter.
Sometimes, many documents are returned. It's not necessary to have all documents in memory at the same time. You can use the lazy versions of methods, to get one document at a time. It's better to use a complex query in place of a recursive search. For each folder, a query must be applied if you activaterecursive=True
.
import os
loader= GoogleDriveLoader(
gdrive_api_file=os.environ["GOOGLE_ACCOUNT_FILE"],
num_results=2,
template="gdrive-query",
filter=lambda search,file:"#test"notinfile.get("description",""),
query="machine learning",
supportsAllDrives=False,
)
for docin loader.load():
print("---")
print(doc.page_content.strip()[:60]+"...")
Related
- Document loaderconceptual guide
- Document loaderhow-to guides