Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

ChatPipeshift

This will help you get started with Pipeshiftchat models. For detailed documentation of all ChatPipeshift features and configurations head to theAPI reference.

Overview

Integration details

ClassPackageLocalSerializableJS supportPackage downloadsPackage latest
ChatPipeshiftlangchain-pipeshift-PyPI - DownloadsPyPI - Version

Model features

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs
-

Setup

To access Pipeshift models you'll need to create an account on Pipeshift, get an API key, and install thelangchain-pipeshift integration package.

Credentials

Head toPipeshift to sign up to Pipeshift and generate an API key. Once you've done this set the PIPESHIFT_API_KEY environment variable:

import getpass
import os

ifnot os.getenv("PIPESHIFT_API_KEY"):
os.environ["PIPESHIFT_API_KEY"]= getpass.getpass("Enter your Pipeshift API key: ")

If you want to get automated tracing of your model calls you can also set yourLangSmith API key by uncommenting below:

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

Installation

The LangChain Pipeshift integration lives in thelangchain-pipeshift package:

%pip install-qU langchain-pipeshift
Note: you may need to restart the kernel to use updated packages.

Instantiation

Now we can instantiate our model object and generate chat completions:

from langchain_pipeshiftimport ChatPipeshift

llm= ChatPipeshift(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
temperature=0,
max_tokens=512,
# other params...
)

Invocation

messages=[
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human","I love programming."),
]
ai_msg= llm.invoke(messages)
ai_msg
AIMessage(content='Here is the translation:\n\nJe suis amoureux du programme. \n\nHowever, a more common translation would be:\n\nJ\'aime programmer.\n\nNote that "Je suis amoureux" typically implies romantic love, whereas "J\'aime" is a more casual way to express affection or enjoyment for an activity, in this case, programming.', additional_kwargs={}, response_metadata={}, id='run-5cad8e5c-d089-44a8-8dcd-22736cde7d7b-0')
print(ai_msg.content)
Here is the translation:

Je suis amoureux du programme.

However, a more common translation would be:

J'aime programmer.

Note that "Je suis amoureux" typically implies romantic love, whereas "J'aime" is a more casual way to express affection or enjoyment for an activity, in this case, programming.

Chaining

We canchain our model with a prompt template like so:

from langchain_core.promptsimport ChatPromptTemplate

prompt= ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human","{input}"),
]
)

chain= prompt| llm
chain.invoke(
{
"input_language":"English",
"output_language":"German",
"input":"I love programming.",
}
)
API Reference:ChatPromptTemplate
AIMessage(content="Das ist schön! Du liebst Programmieren! (That's great! You love programming!)\n\nWould you like to know the German translation of a specific programming-related term or phrase, or would you like me to help you with something else?", additional_kwargs={}, response_metadata={}, id='run-8a4b7d56-23d9-43a7-8fb2-e05f556d94bd-0')

API reference

For detailed documentation of all ChatPipeshift features and configurations head to the API reference:https://dashboard.pipeshift.com/docs

Related


[8]ページ先頭

©2009-2025 Movatter.jp