ChatNVIDIA
This will help you get started with NVIDIAchat models. For detailed documentation of allChatNVIDIA
features and configurations head to theAPI reference.
Overview
Thelangchain-nvidia-ai-endpoints
package contains LangChain integrations building applications with models onNVIDIA NIM inference microservice. NIM supports models across domains like chat, embedding, and re-ranking modelsfrom the community as well as NVIDIA. These models are optimized by NVIDIA to deliver the best performance on NVIDIAaccelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a singlecommand on NVIDIA accelerated infrastructure.
NVIDIA hosted deployments of NIMs are available to test on theNVIDIA API catalog. After testing,NIMs can be exported from NVIDIA’s API catalog using the NVIDIA AI Enterprise license and run on-premises or in the cloud,giving enterprises ownership and full control of their IP and AI application.
NIMs are packaged as container images on a per model basis and are distributed as NGC container images through the NVIDIA NGC Catalog.At their core, NIMs provide easy, consistent, and familiar APIs for running inference on an AI model.
This example goes over how to use LangChain to interact with NVIDIA supported via theChatNVIDIA
class.
For more information on accessing the chat models through this api, check out theChatNVIDIA documentation.
Integration details
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatNVIDIA | langchain_nvidia_ai_endpoints | ✅ | beta | ❌ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |
Setup
To get started:
Create a free account withNVIDIA, which hosts NVIDIA AI Foundation models.
Click on your model of choice.
Under
Input
select thePython
tab, and clickGet API Key
. Then clickGenerate Key
.Copy and save the generated key as
NVIDIA_API_KEY
. From there, you should have access to the endpoints.
Credentials
import getpass
import os
ifnot os.getenv("NVIDIA_API_KEY"):
# Note: the API key should start with "nvapi-"
os.environ["NVIDIA_API_KEY"]= getpass.getpass("Enter your NVIDIA API key: ")
To enable automated tracing of your model calls, set yourLangSmith API key:
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installation
The LangChain NVIDIA AI Endpoints integration lives in thelangchain_nvidia_ai_endpoints
package:
%pip install--upgrade--quiet langchain-nvidia-ai-endpoints
Instantiation
Now we can access models in the NVIDIA API Catalog:
## Core LC Chat Interface
from langchain_nvidia_ai_endpointsimport ChatNVIDIA
llm= ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")
Invocation
result= llm.invoke("Write a ballad about LangChain.")
print(result.content)
Working with NVIDIA NIMs
When ready to deploy, you can self-host models with NVIDIA NIM—which is included with the NVIDIA AI Enterprise software license—and run them anywhere, giving you ownership of your customizations and full control of your intellectual property (IP) and AI applications.
from langchain_nvidia_ai_endpointsimport ChatNVIDIA
# connect to an embedding NIM running at localhost:8000, specifying a specific model
llm= ChatNVIDIA(base_url="http://localhost:8000/v1", model="meta/llama3-8b-instruct")
Stream, Batch, and Async
These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples.
print(llm.batch(["What's 2*3?","What's 2*6?"]))
# Or via the async API
# await llm.abatch(["What's 2*3?", "What's 2*6?"])
for chunkin llm.stream("How far can a seagull fly in one day?"):
# Show the token separations
print(chunk.content, end="|")
asyncfor chunkin llm.astream(
"How long does it take for monarch butterflies to migrate?"
):
print(chunk.content, end="|")
Supported models
Queryingavailable_models
will still give you all of the other models offered by your API credentials.
Theplayground_
prefix is optional.
ChatNVIDIA.get_available_models()
# llm.get_available_models()
Model types
All of these models above are supported and can be accessed viaChatNVIDIA
.
Some model types support unique prompting techniques and chat messages. We will review a few important ones below.
To find out more about a specific model, please navigate to the API section of an AI Foundation modelas linked here.
General Chat
Models such asmeta/llama3-8b-instruct
andmistralai/mixtral-8x22b-instruct-v0.1
are good all-around models that you can use for with any LangChain chat messages. Example below.
from langchain_core.output_parsersimport StrOutputParser
from langchain_core.promptsimport ChatPromptTemplate
from langchain_nvidia_ai_endpointsimport ChatNVIDIA
prompt= ChatPromptTemplate.from_messages(
[("system","You are a helpful AI assistant named Fred."),("user","{input}")]
)
chain= prompt| ChatNVIDIA(model="meta/llama3-8b-instruct")| StrOutputParser()
for txtin chain.stream({"input":"What's your name?"}):
print(txt, end="")
Code Generation
These models accept the same arguments and input structure as regular chat models, but they tend to perform better on code-generation and structured code tasks. An example of this ismeta/codellama-70b
.
prompt= ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert coding AI. Respond only in valid python; no narration whatsoever.",
),
("user","{input}"),
]
)
chain= prompt| ChatNVIDIA(model="meta/codellama-70b")| StrOutputParser()
for txtin chain.stream({"input":"How do I solve this fizz buzz problem?"}):
print(txt, end="")
Multimodal
NVIDIA also supports multimodal inputs, meaning you can provide both images and text for the model to reason over. An example model supporting multimodal inputs isnvidia/neva-22b
.
Below is an example use:
import IPython
import requests
image_url="https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/nvidia-picasso-3c33-p@2x.jpg"## Large Image
image_content= requests.get(image_url).content
IPython.display.Image(image_content)
from langchain_nvidia_ai_endpointsimport ChatNVIDIA
llm= ChatNVIDIA(model="nvidia/neva-22b")
Passing an image as a URL
from langchain_core.messagesimport HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type":"text","text":"Describe this image:"},
{"type":"image_url","image_url":{"url": image_url}},
]
)
]
)
Passing an image as a base64 encoded string
At the moment, some extra processing happens client-side to support larger images like the one above. But for smaller images (and to better illustrate the process going on under the hood), we can directly pass in the image as shown below:
import IPython
import requests
image_url="https://picsum.photos/seed/kitten/300/200"
image_content= requests.get(image_url).content
IPython.display.Image(image_content)
import base64
from langchain_core.messagesimport HumanMessage
## Works for simpler images. For larger images, see actual implementation
b64_string= base64.b64encode(image_content).decode("utf-8")
llm.invoke(
[
HumanMessage(
content=[
{"type":"text","text":"Describe this image:"},
{
"type":"image_url",
"image_url":{"url":f"data:image/png;base64,{b64_string}"},
},
]
)
]
)
Directly within the string
The NVIDIA API uniquely accepts images as base64 images inlined within<img/>
HTML tags. While this isn't interoperable with other LLMs, you can directly prompt the model accordingly.
base64_with_mime_type=f"data:image/png;base64,{b64_string}"
llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />')
Example usage within a RunnableWithMessageHistory
Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to usingConversationChain
. Below, we show theLangChain RunnableWithMessageHistory example applied to themistralai/mixtral-8x22b-instruct-v0.1
model.
%pip install--upgrade--quiet langchain
from langchain_core.chat_historyimport InMemoryChatMessageHistory
from langchain_core.runnables.historyimport RunnableWithMessageHistory
# store is a dictionary that maps session IDs to their corresponding chat histories.
store={}# memory is maintained outside the chain
# A function that returns the chat history for a given session ID.
defget_session_history(session_id:str)-> InMemoryChatMessageHistory:
if session_idnotin store:
store[session_id]= InMemoryChatMessageHistory()
return store[session_id]
chat= ChatNVIDIA(
model="mistralai/mixtral-8x22b-instruct-v0.1",
temperature=0.1,
max_tokens=100,
top_p=1.0,
)
# Define a RunnableConfig object, with a `configurable` key. session_id determines thread
config={"configurable":{"session_id":"1"}}
conversation= RunnableWithMessageHistory(
chat,
get_session_history,
)
conversation.invoke(
"Hi I'm Srijan Dubey.",# input or query
config=config,
)
conversation.invoke(
"I'm doing well! Just having a conversation with an AI.",
config=config,
)
conversation.invoke(
"Tell me about yourself.",
config=config,
)
Tool calling
Starting in v0.2,ChatNVIDIA
supportsbind_tools.
ChatNVIDIA
provides integration with the variety of models onbuild.nvidia.com as well as local NIMs. Not all these models are trained for tool calling. Be sure to select a model that does have tool calling for your experimention and applications.
You can get a list of models that are known to support tool calling with,
tool_models=[
modelfor modelin ChatNVIDIA.get_available_models()if model.supports_tools
]
tool_models
With a tool capable model,
from langchain_core.toolsimport tool
from pydanticimport Field
@tool
defget_current_weather(
location:str= Field(..., description="The location to get the weather for."),
):
"""Get the current weather for a location."""
...
llm= ChatNVIDIA(model=tool_models[0].id).bind_tools(tools=[get_current_weather])
response= llm.invoke("What is the weather in Boston?")
response.tool_calls
SeeHow to use chat models to call tools for additional examples.
Chaining
We canchain our model with a prompt template like so:
from langchain_core.promptsimport ChatPromptTemplate
prompt= ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human","{input}"),
]
)
chain= prompt| llm
chain.invoke(
{
"input_language":"English",
"output_language":"German",
"input":"I love programming.",
}
)
API reference
For detailed documentation of allChatNVIDIA
features and configurations head to the API reference:https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html
Related
- Chat modelconceptual guide
- Chat modelhow-to guides