Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
OurBuilding Ambient Agents with LangGraph course is now available on LangChain Academy!
Open In ColabOpen on GitHub

ModelScopeChatEndpoint

ModelScope (Home |GitHub) is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation.

This will help you get started with ModelScope Chat Endpoint.

Overview

Integration details

ProviderClassPackageLocalSerializablePackage downloadsPackage latest
ModelScopeModelScopeChatEndpointlangchain-modelscope-integrationPyPI - DownloadsPyPI - Version

Setup

To access ModelScope chat endpoint you'll need to create a ModelScope account, get an SDK token, and install thelangchain-modelscope-integration integration package.

Credentials

Head toModelScope to sign up to ModelScope and generate anSDK token. Once you've done this set theMODELSCOPE_SDK_TOKEN environment variable:

import getpass
import os

ifnot os.getenv("MODELSCOPE_SDK_TOKEN"):
os.environ["MODELSCOPE_SDK_TOKEN"]= getpass.getpass(
"Enter your ModelScope SDK token: "
)

Installation

The LangChain ModelScope integration lives in thelangchain-modelscope-integration package:

%pip install-qU langchain-modelscope-integration

Instantiation

Now we can instantiate our model object and generate chat completions:

from langchain_modelscopeimport ModelScopeChatEndpoint

llm= ModelScopeChatEndpoint(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
temperature=0,
max_tokens=1024,
timeout=60,
max_retries=2,
# other params...
)

Invocation

messages=[
(
"system",
"You are a helpful assistant that translates English to Chinese. Translate the user sentence.",
),
("human","I love programming."),
]
ai_msg= llm.invoke(messages)
ai_msg
AIMessage(content='我喜欢编程。', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 3, 'prompt_tokens': 33, 'total_tokens': 36, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'qwen2.5-coder-32b-instruct', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-60bb3461-60ae-4c0b-8997-ab55ef77fcd6-0', usage_metadata={'input_tokens': 33, 'output_tokens': 3, 'total_tokens': 36, 'input_token_details': {}, 'output_token_details': {}})
print(ai_msg.content)
我喜欢编程。

Chaining

We canchain our model with a prompt template like so:

from langchain_core.promptsimport ChatPromptTemplate

prompt= ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human","{input}"),
]
)

chain= prompt| llm
chain.invoke(
{
"input_language":"English",
"output_language":"Chinese",
"input":"I love programming.",
}
)
API Reference:ChatPromptTemplate
AIMessage(content='我喜欢编程。', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 3, 'prompt_tokens': 28, 'total_tokens': 31, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'qwen2.5-coder-32b-instruct', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9f011a3a-9a11-4759-8d16-5b1843a78862-0', usage_metadata={'input_tokens': 28, 'output_tokens': 3, 'total_tokens': 31, 'input_token_details': {}, 'output_token_details': {}})

API reference

For detailed documentation of all ModelScopeChatEndpoint features and configurations head to the reference:https://modelscope.cn/docs/model-service/API-Inference/intro

Related


[8]ページ先頭

©2009-2025 Movatter.jp