How to use chat models to call tools
This guide assumes familiarity with the following concepts:
Tool calling allows a chat model to respond to a given prompt by "calling a tool".
Remember, while the name "tool calling" implies that the model is directly performing some action, this is actually not the case! The model only generates the arguments to a tool, and actually running the tool (or not) is up to the user.
Tool calling is a general technique that generates structured output from a model, and you can use it even when you don't intend to invoke any tools. An example use-case of that isextraction from unstructured text.
If you want to see how to use the model-generated tool call to actually run a toolcheck out this guide.
Tool calling is not universal, but is supported by many popular LLM providers. You can find alist of all models that support tool calling here.
LangChain implements standard interfaces for defining tools, passing them to LLMs, and representing tool calls.This guide will cover how to bind tools to an LLM, then invoke the LLM to generate these arguments.
Defining tool schemas
For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what it's arguments are. Chat models that support tool calling features implement a.bind_tools()
method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChainTool objects. Subsequent invocations of the model will pass in these tool schemas along with the prompt.
Python functions
Our tool schemas can be Python functions:
# The function name, type hints, and docstring are all part of the tool
# schema that's passed to the model. Defining good, descriptive schemas
# is an extension of prompt engineering and is an important part of
# getting models to perform well.
defadd(a:int, b:int)->int:
"""Add two integers.
Args:
a: First integer
b: Second integer
"""
return a+ b
defmultiply(a:int, b:int)->int:
"""Multiply two integers.
Args:
a: First integer
b: Second integer
"""
return a* b
LangChain Tool
LangChain also implements a@tool
decorator that allows for further control of the tool schema, such as tool names and argument descriptions. See the how-to guidehere for details.
Pydantic class
You can equivalently define the schemas without the accompanying functions usingPydantic.
Note that all fields arerequired
unless provided a default value.
from pydanticimport BaseModel, Field
classadd(BaseModel):
"""Add two integers."""
a:int= Field(..., description="First integer")
b:int= Field(..., description="Second integer")
classmultiply(BaseModel):
"""Multiply two integers."""
a:int= Field(..., description="First integer")
b:int= Field(..., description="Second integer")
TypedDict class
langchain-core>=0.2.25
Or using TypedDicts and annotations:
from typing_extensionsimport Annotated, TypedDict
classadd(TypedDict):
"""Add two integers."""
# Annotations must have the type and can optionally include a default value and description (in that order).
a: Annotated[int,...,"First integer"]
b: Annotated[int,...,"Second integer"]
classmultiply(TypedDict):
"""Multiply two integers."""
a: Annotated[int,...,"First integer"]
b: Annotated[int,...,"Second integer"]
tools=[add, multiply]
To actually bind those schemas to a chat model, we'll use the.bind_tools()
method. This handles convertingtheadd
andmultiply
schemas to the proper format for the model. The tool schema will then be passed it in each time the model is invoked.
pip install -qU "langchain[google-genai]"
import getpass
import os
ifnot os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"]= getpass.getpass("Enter API key for Google Gemini: ")
from langchain.chat_modelsimport init_chat_model
llm= init_chat_model("gemini-2.0-flash", model_provider="google_genai")
llm_with_tools= llm.bind_tools(tools)
query="What is 3 * 12?"
llm_with_tools.invoke(query)
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_iXj4DiW1p7WLjTAQMRO0jxMs', 'function': {'arguments': '{"a":3,"b":12}', 'name': 'multiply'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 80, 'total_tokens': 97}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_483d39d857', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-0b620986-3f62-4df7-9ba3-4595089f9ad4-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_iXj4DiW1p7WLjTAQMRO0jxMs', 'type': 'tool_call'}], usage_metadata={'input_tokens': 80, 'output_tokens': 17, 'total_tokens': 97})
As we can see our LLM generated arguments to a tool! You can look at the docs forbind_tools() to learn about all the ways to customize how your LLM selects tools, as well asthis guide on how to force the LLM to call a tool rather than letting it decide.
Tool calls
If tool calls are included in a LLM response, they are attached to the correspondingmessageormessage chunkas a list oftool callobjects in the.tool_calls
attribute.
Note that chat models can call multiple tools at once.
AToolCall
is a typed dict that includes atool name, dict of argument values, and (optionally) an identifier. Messages with notool calls default to an empty list for this attribute.
query="What is 3 * 12? Also, what is 11 + 49?"
llm_with_tools.invoke(query).tool_calls
[{'name': 'multiply',
'args': {'a': 3, 'b': 12},
'id': 'call_1fyhJAbJHuKQe6n0PacubGsL',
'type': 'tool_call'},
{'name': 'add',
'args': {'a': 11, 'b': 49},
'id': 'call_fc2jVkKzwuPWyU7kS9qn1hyG',
'type': 'tool_call'}]
The.tool_calls
attribute should contain valid tool calls. Note that on occasion,model providers may output malformed tool calls (e.g., arguments that are notvalid JSON). When parsing fails in these cases, instancesofInvalidToolCallare populated in the.invalid_tool_calls
attribute. AnInvalidToolCall
can havea name, string arguments, identifier, and error message.
Parsing
If desired,output parsers can further process the output. For example, we can convert existing values populated on the.tool_calls
to Pydantic objects using thePydanticToolsParser:
from langchain_core.output_parsersimport PydanticToolsParser
from pydanticimport BaseModel, Field
classadd(BaseModel):
"""Add two integers."""
a:int= Field(..., description="First integer")
b:int= Field(..., description="Second integer")
classmultiply(BaseModel):
"""Multiply two integers."""
a:int= Field(..., description="First integer")
b:int= Field(..., description="Second integer")
chain= llm_with_tools| PydanticToolsParser(tools=[add, multiply])
chain.invoke(query)
[multiply(a=3, b=12), add(a=11, b=49)]
Next steps
Now you've learned how to bind tool schemas to a chat model and have the model call the tool.
Next, check out this guide on actually using the tool by invoking the function and passing the results back to the model:
You can also check out some more specific uses of tool calling:
- Gettingstructured outputs from models
- Few shot promptingwith tools
- Streamtool calls
- Passruntime values to tools