Caching
Embeddings can be stored or temporarily cached to avoid needing to recompute them.
Caching embeddings can be done using aCacheBackedEmbeddings
. The cache backed embedder is a wrapper around an embedder that cachesembeddings in a key-value store. The text is hashed and the hash is used as the key in the cache.
The main supported way to initialize aCacheBackedEmbeddings
isfrom_bytes_store
. It takes the following parameters:
- underlying_embedder: The embedder to use for embedding.
- document_embedding_cache: Any
ByteStore
for caching document embeddings. - batch_size: (optional, defaults to
None
) The number of documents to embed between store updates. - namespace: (optional, defaults to
""
) The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used. - query_embedding_cache: (optional, defaults to
None
or not caching) AByteStore
for caching query embeddings, orTrue
to use the same store asdocument_embedding_cache
.
Attention:
- Be sure to set the
namespace
parameter to avoid collisions of the same text embedded using different embeddings models. CacheBackedEmbeddings
does not cache query embeddings by default. To enable query caching, one needs to specify aquery_embedding_cache
.
from langchain.embeddingsimport CacheBackedEmbeddings
Using with a Vector Store
First, let's see an example that uses the local file system for storing embeddings and uses FAISS vector store for retrieval.
%pip install--upgrade--quiet langchain-openai faiss-cpu
from langchain.storageimport LocalFileStore
from langchain_community.document_loadersimport TextLoader
from langchain_community.vectorstoresimport FAISS
from langchain_openaiimport OpenAIEmbeddings
from langchain_text_splittersimport CharacterTextSplitter
underlying_embeddings= OpenAIEmbeddings()
store= LocalFileStore("./cache/")
cached_embedder= CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings, store, namespace=underlying_embeddings.model
)
The cache is empty prior to embedding:
list(store.yield_keys())
[]
Load the document, split it into chunks, embed each chunk and load it into the vector store.
raw_documents= TextLoader("state_of_the_union.txt").load()
text_splitter= CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents= text_splitter.split_documents(raw_documents)
Create the vector store:
%%time
db= FAISS.from_documents(documents, cached_embedder)
CPU times: user 218 ms, sys: 29.7 ms, total: 248 ms
Wall time: 1.02 s
If we try to create the vector store again, it'll be much faster since it does not need to re-compute any embeddings.
%%time
db2= FAISS.from_documents(documents, cached_embedder)
CPU times: user 15.7 ms, sys: 2.22 ms, total: 18 ms
Wall time: 17.2 ms
And here are some of the embeddings that got created:
list(store.yield_keys())[:5]
['text-embedding-ada-00217a6727d-8916-54eb-b196-ec9c9d6ca472',
'text-embedding-ada-0025fc0d904-bd80-52da-95c9-441015bfb438',
'text-embedding-ada-002e4ad20ef-dfaa-5916-9459-f90c6d8e8159',
'text-embedding-ada-002ed199159-c1cd-5597-9757-f80498e8f17b',
'text-embedding-ada-0021297d37a-2bc1-5e19-bf13-6c950f075062']
Swapping theByteStore
In order to use a differentByteStore
, just use it when creating yourCacheBackedEmbeddings
. Below, we create an equivalent cached embeddings object, except using the non-persistentInMemoryByteStore
instead:
from langchain.embeddingsimport CacheBackedEmbeddings
from langchain.storageimport InMemoryByteStore
store= InMemoryByteStore()
cached_embedder= CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings, store, namespace=underlying_embeddings.model
)