typing --- 支援型別提示

在 3.5 版被加入.

原始碼:Lib/typing.py

備註

Python runtime 不強制要求函式與變數的型別註釋。他們可以被第三方工具使用,如:型別檢查器、IDE、linter 等。


此模組提供 runtime 型別提示支援。

動腦筋思考下面的函式:

defsurface_area_of_cube(edge_length:float)->str:returnf"The surface area of the cube is{6*edge_length**2}."

函式surface_area_of_cube 需要一個引數且預期是一個float 的實例,如edge_length:float 所指出的型別提示。這個函式預期會回傳一個str 的實例,如->str 所指出的提示。

儘管型別提示可以是簡單類別,像是floatstr,他們也可以變得更為複雜。模組typing 提供一組更高階的型別提示詞彙。

新功能會頻繁的新增至typing 模組中。typing_extensions 套件為這些新功能提供了 backport(向後移植的)版本,提供給舊版本的 Python 使用。

也參考

"型別小抄 (Typing cheat sheet)"

型別提示的快速預覽(發布於 mypy 的文件中)

mypy 文件的 "型別系統參考資料 (Type System Reference)" 章節

Python 的加註型別系統是基於 PEPs 進行標準化,所以這個參照 (reference) 應該在多數 Python 型別檢查器中廣為使用。(某些部分依然是特定給 mypy 使用。)

"Python 的靜態型別 (Static Typing)"

由社群編寫的跨平台型別檢查器文件 (type-checker-agnostic) 詳細描述加註型別系統的功能、實用的加註型別衍伸工具、以及加註型別的最佳實踐 (best practice)。

Python 型別系統的技術規範

關於 Python 型別系統標準的 (canonical)、最新的技術規範可以在「Python 型別系統的技術規範」找到。

型別別名

一個型別別名被定義來使用type 陳述式,其建立了TypeAliasType 的實例。在這個範例中,Vectorlist[float] 會被當作和靜態型別檢查器一樣同等對待:

typeVector=list[float]defscale(scalar:float,vector:Vector)->Vector:return[scalar*numfornuminvector]# passes type checking; a list of floats qualifies as a Vector.new_vector=scale(2.0,[1.0,-4.2,5.4])

型別別名對於簡化複雜的型別簽名 (complex type signature) 非常好用。舉例來說:

fromcollections.abcimportSequencetypeConnectionOptions=dict[str,str]typeAddress=tuple[str,int]typeServer=tuple[Address,ConnectionOptions]defbroadcast_message(message:str,servers:Sequence[Server])->None:...# The static type checker will treat the previous type signature as# being exactly equivalent to this one.defbroadcast_message(message:str,servers:Sequence[tuple[tuple[str,int],dict[str,str]]])->None:...

type 陳述式是 Python 3.12 的新功能。為了向後相容性,型別別名可以透過簡單的賦值來建立:

Vector=list[float]

或是用TypeAlias 標記,讓它明確的表示這是一個型別別名,而非一般的變數賦值:

fromtypingimportTypeAliasVector:TypeAlias=list[float]

NewType

使用NewType 輔助工具 (helper) 建立獨特型別:

fromtypingimportNewTypeUserId=NewType('UserId',int)some_id=UserId(524313)

若它是原本型別的子類別,靜態型別檢查器會將其視為一個新的型別。這對於幫助擷取邏輯性錯誤非常有用:

defget_user_name(user_id:UserId)->str:...# passes type checkinguser_a=get_user_name(UserId(42351))# fails type checking; an int is not a UserIduser_b=get_user_name(-1)

你依然可以在對於型別UserId 的變數中執行所有int 的操作。這讓你可以在預期接受int 的地方傳遞一個UserId,還能預防你意外使用無效的方法建立一個UserId

# 'output' is of type 'int', not 'UserId'output=UserId(23413)+UserId(54341)

注意這只會透過靜態型別檢查器強制檢查。在 runtime 中,陳述式 (statement)Derived=NewType('Derived',Base) 會使Derived 成為一個 callable(可呼叫物件),會立即回傳任何你傳遞的引數。這意味著 expression (運算式)Derived(some_value) 不會建立一個新的類別或過度引入原有的函式呼叫。

更精確地說,expressionsome_valueisDerived(some_value) 在 runtime 永遠為 true。

這會無法建立一個Derived 的子型別:

fromtypingimportNewTypeUserId=NewType('UserId',int)# Fails at runtime and does not pass type checkingclassAdminUserId(UserId):pass

無論如何,這有辦法基於 '衍生的'NewType 建立一個NewType

fromtypingimportNewTypeUserId=NewType('UserId',int)ProUserId=NewType('ProUserId',UserId)

以及針對ProUserId 的型別檢查會如期運作。

更多細節請見PEP 484

備註

請記得使用型別別名是宣告兩種型別是互相相等的。使用typeAlias=Original 則會讓靜態型別檢查器在任何情況之下將Alias 視為與Original完全相等。這當你想把複雜的型別簽名進行簡化時,非常好用。

相反的,NewType 宣告一個型別會是另外一種型別的子類別。使用Derived=NewType('Derived',Original) 會使靜態型別檢查器將Derived 視為Original 的子類別,也意味著一個型別為Original 的值,不能被使用在任何預期接收到型別Derived 的值的區域。這當你想用最小的 runtime 成本預防邏輯性錯誤而言,非常有用。

在 3.5.2 版被加入.

在 3.10 版的變更:現在的NewType 比起一個函式更像一個類別。因此,比起一般的函式,呼叫NewType 需要額外的 runtime 成本。

在 3.11 版的變更:呼叫NewType 的效能已經恢復與 Python 3.9 相同的水準。

註釋 callable 物件

函式,或者是其他callable 物件,可以使用collections.abc.Callable 或以棄用的typing.Callable 進行註釋。Callable[[int],str] 象徵為一個函式,可以接受一個型別為int 的引數,並回傳一個str

舉例來說:

fromcollections.abcimportCallable,Awaitabledeffeeder(get_next_item:Callable[[],str])->None:...# Bodydefasync_query(on_success:Callable[[int],None],on_error:Callable[[int,Exception],None])->None:...# Bodyasyncdefon_update(value:str)->None:...# Bodycallback:Callable[[str],Awaitable[None]]=on_update

使用下標語法 (subscription syntax) 時,必須使用到兩個值,分別為引述串列以及回傳類別。引數串列必須為一個型別串列:ParamSpecConcatenate 或是一個刪節號 (ellipsis)。回傳類別必為一個單一類別。

若刪節號文字... 被當作引數串列給定,其指出一個具任何、任意參數列表的 callable 會被接受:

defconcat(x:str,y:str)->str:returnx+yx:Callable[...,str]x=str# OKx=concat# Also OK

Callable 不如有可變數量引數的函式、overloadedfunctions、或是僅限關鍵字參數的函式,可以表示複雜簽名。然而,這些簽名可以透過定義一個具有__call__() 方法的Protocol 類別進行表示:

fromcollections.abcimportIterablefromtypingimportProtocolclassCombiner(Protocol):def__call__(self,*vals:bytes,maxlen:int|None=None)->list[bytes]:...defbatch_proc(data:Iterable[bytes],cb_results:Combiner)->bytes:foritemindata:...defgood_cb(*vals:bytes,maxlen:int|None=None)->list[bytes]:...defbad_cb(*vals:bytes,maxitems:int|None)->list[bytes]:...batch_proc([],good_cb)# OKbatch_proc([],bad_cb)# Error! Argument 2 has incompatible type because of# different name and kind in the callback

Callable 物件可以取用其他 callable 當作引數使用,可以透過ParamSpec 指出他們的參數型別是個別獨立的。另外,如果這個 callable 從其他 callable 新增或刪除引數時,將會使用到Concatenate 運算子。他們可以分別採用Callable[ParamSpecVariable,ReturnType] 以及Callable[Concatenate[Arg1Type,Arg2Type,...,ParamSpecVariable],ReturnType] 的形式。

在 3.10 版的變更:Callable 現已支援ParamSpec 以及Concatenate。請參閱PEP 612 閱讀詳細內容。

也參考

ParamSpec 以及Concatenate 的文件中,提供範例如何在Callable 中使用。

泛型

因為關於物件的型別資訊留存在容器之內,且無法使用通用的方式進行靜態推論 (statically inferred),許多標準函式庫的容器類別支援以下標來表示容器內預期的元素。

fromcollections.abcimportMapping,SequenceclassEmployee:...# Sequence[Employee] indicates that all elements in the sequence# must be instances of "Employee".# Mapping[str, str] indicates that all keys and all values in the mapping# must be strings.defnotify_by_email(employees:Sequence[Employee],overrides:Mapping[str,str])->None:...

泛型函式及類別可以使用型別參數語法 (type parameter syntax) 進行參數化 (parameterize) :

fromcollections.abcimportSequencedeffirst[T](l:Sequence[T])->T:# Function is generic over the TypeVar "T"returnl[0]

或是直接使用TypeVar 工廠 (factory):

fromcollections.abcimportSequencefromtypingimportTypeVarU=TypeVar('U')# Declare type variable "U"defsecond(l:Sequence[U])->U:# Function is generic over the TypeVar "U"returnl[1]

在 3.12 版的變更:在 Python 3.12 中,泛型的語法支援是全新功能。

註釋元組 (tuple)

在 Python 大多數的容器當中,加註型別系統認為容器內的所有元素會是相同型別。舉例來說:

fromcollections.abcimportMapping# Type checker will infer that all elements in ``x`` are meant to be intsx:list[int]=[]# Type checker error: ``list`` only accepts a single type argument:y:list[int,str]=[1,'foo']# Type checker will infer that all keys in ``z`` are meant to be strings,# and that all values in ``z`` are meant to be either strings or intsz:Mapping[str,str|int]={}

list 只接受一個型別引數,所以型別檢查器可能在上述y 賦值 (assignment) 觸發錯誤。類似的範例,Mapping 只接受兩個型別引數:第一個引數指出 keys(鍵)的型別;第二個引數指出 values(值)的型別。

然而,與其他多數的 Python 容器不同,在慣用的 (idiomatic) Python 程式碼中,元組可以擁有不完全相同型別的元素是相當常見的。為此,元組在 Python 的加註型別系統中是個特例 (special-cased)。tuple 接受任何數量的型別引數:

# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an intx:tuple[int]=(5,)# OK: ``y`` is assigned to a tuple of length 2;# element 1 is an int, element 2 is a stry:tuple[int,str]=(5,"foo")# Error: the type annotation indicates a tuple of length 1,# but ``z`` has been assigned to a tuple of length 3z:tuple[int]=(1,2,3)

為了標示一個元組可以為任意長度,且所有元素皆是相同型別T,請使用tuple[T,...] 進行標示。為了標示一個空元組,請使用tuple[()]。單純使用tuple 作為註釋,會與使用tuple[Any,...] 是相等的:

x:tuple[int,...]=(1,2)# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any lengthx=(1,2,3)x=()# This reassignment is an error: all elements in ``x`` must be intsx=("foo","bar")# ``y`` can only ever be assigned to an empty tupley:tuple[()]=()z:tuple=("foo","bar")# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``z=(1,2,3)z=()

類別物件的型別

一個變數被註釋為C 可以接受一個型別為C 的值。相對的,一個變數備註解為type[C] (或已棄用的typing.Type[C])可以接受本身為該類別的值 -- 具體來說,他可能會接受C類別物件。舉例來說:

a=3# Has type ``int``b=int# Has type ``type[int]``c=type(a)# Also has type ``type[int]``

請記得type[C] 是共變 (covariant) 的:

classUser:...classProUser(User):...classTeamUser(User):...defmake_new_user(user_class:type[User])->User:# ...returnuser_class()make_new_user(User)# OKmake_new_user(ProUser)# Also OK: ``type[ProUser]`` is a subtype of ``type[User]``make_new_user(TeamUser)# Still finemake_new_user(User())# Error: expected ``type[User]`` but got ``User``make_new_user(int)# Error: ``type[int]`` is not a subtype of ``type[User]``

type 僅有的合法參數是類別、Any型別變數以及這些型別任意組合成的聯集。舉例來說:

defnew_non_team_user(user_class:type[BasicUser|ProUser]):...new_non_team_user(BasicUser)# OKnew_non_team_user(ProUser)# OKnew_non_team_user(TeamUser)# Error: ``type[TeamUser]`` is not a subtype# of ``type[BasicUser | ProUser]``new_non_team_user(User)# Also an error

type[Any] 等價於type ,其為 Pythonmetaclass 階層結構 (hierachy)

Annotating generators and coroutines

A generator can be annotated using the generic typeGenerator[YieldType,SendType,ReturnType].For example:

defecho_round()->Generator[int,float,str]:sent=yield0whilesent>=0:sent=yieldround(sent)return'Done'

Note that unlike many other generic classes in the standard library,theSendType ofGenerator behavescontravariantly, not covariantly or invariantly.

TheSendType andReturnType parameters default toNone:

definfinite_stream(start:int)->Generator[int]:whileTrue:yieldstartstart+=1

It is also possible to set these types explicitly:

definfinite_stream(start:int)->Generator[int,None,None]:whileTrue:yieldstartstart+=1

Simple generators that only ever yield values can also be annotatedas having a return type of eitherIterable[YieldType]orIterator[YieldType]:

definfinite_stream(start:int)->Iterator[int]:whileTrue:yieldstartstart+=1

Async generators are handled in a similar fashion, but don'texpect aReturnType type argument(AsyncGenerator[YieldType,SendType]).TheSendType argument defaults toNone, so the following definitionsare equivalent:

asyncdefinfinite_stream(start:int)->AsyncGenerator[int]:whileTrue:yieldstartstart=awaitincrement(start)asyncdefinfinite_stream(start:int)->AsyncGenerator[int,None]:whileTrue:yieldstartstart=awaitincrement(start)

As in the synchronous case,AsyncIterable[YieldType]andAsyncIterator[YieldType] areavailable as well:

asyncdefinfinite_stream(start:int)->AsyncIterator[int]:whileTrue:yieldstartstart=awaitincrement(start)

Coroutines can be annotated usingCoroutine[YieldType,SendType,ReturnType].Generic arguments correspond to those ofGenerator,for example:

fromcollections.abcimportCoroutinec:Coroutine[list[str],str,int]# Some coroutine defined elsewherex=c.send('hi')# Inferred type of 'x' is list[str]asyncdefbar()->None:y=awaitc# Inferred type of 'y' is int

使用者定義泛型型別

一個使用者定義的類別可以被定義成一個泛型類別。

fromloggingimportLoggerclassLoggedVar[T]:def__init__(self,value:T,name:str,logger:Logger)->None:self.name=nameself.logger=loggerself.value=valuedefset(self,new:T)->None:self.log('Set '+repr(self.value))self.value=newdefget(self)->T:self.log('Get '+repr(self.value))returnself.valuedeflog(self,message:str)->None:self.logger.info('%s:%s',self.name,message)

這個語法指出類別LoggedVar 透過一個單一的型別變數T 進行參數化 (parameterised)。這使得T 在類別中有效的成為型別。

泛型類別隱性繼承了Generic。為了相容 Python 3.11 及更早版本,也可以明確的繼承Generic 並指出是一個泛型類別:

fromtypingimportTypeVar,GenericT=TypeVar('T')classLoggedVar(Generic[T]):...

泛型類別有__class_getitem__() 方法,其意味著可以在 runtime 進行參數化(如下述的LoggedVar[int]):

fromcollections.abcimportIterabledefzero_all_vars(vars:Iterable[LoggedVar[int]])->None:forvarinvars:var.set(0)

一個泛型型別可以有任意數量的型別變數。所有種類的TypeVar 都可以作為泛型型別的參數:

fromtypingimportTypeVar,Generic,SequenceclassWeirdTrio[T,B:Sequence[bytes],S:(int,str)]:...OldT=TypeVar('OldT',contravariant=True)OldB=TypeVar('OldB',bound=Sequence[bytes],covariant=True)OldS=TypeVar('OldS',int,str)classOldWeirdTrio(Generic[OldT,OldB,OldS]):...

Generic 的每個型別變數引數必不相同。因此以下是無效的:

fromtypingimportTypeVar,Generic...classPair[M,M]:# SyntaxError...T=TypeVar('T')classPair(Generic[T,T]):# INVALID...

泛型類別亦可以繼承其他類別:

fromcollections.abcimportSizedclassLinkedList[T](Sized):...

當繼承泛型類別時,部份的型別參數可固定:

fromcollections.abcimportMappingclassMyDict[T](Mapping[str,T]):...

在這種情況下MyDict 有一個單一的參數T

若使用泛型類別卻沒有特指型別參數,則會將每個位置視為Any。在下列的範例中MyIterable 不是泛型,但隱性繼承了Iterable[Any]

fromcollections.abcimportIterableclassMyIterable(Iterable):# Same as Iterable[Any]...

使用者定義的泛型型別別名也有支援。例如:

fromcollections.abcimportIterabletypeResponse[S]=Iterable[S]|int# Return type here is same as Iterable[str] | intdefresponse(query:str)->Response[str]:...typeVec[T]=Iterable[tuple[T,T]]definproduct[T:(int,float,complex)](v:Vec[T])->T:# Same as Iterable[tuple[T, T]]returnsum(x*yforx,yinv)

為了向後相容性,泛型型別別名可以透過簡單的賦值來建立:

fromcollections.abcimportIterablefromtypingimportTypeVarS=TypeVar("S")Response=Iterable[S]|int

在 3.7 版的變更:Generic 不再是一個自訂的 metaclass。

在 3.12 版的變更:在版本 3.12 新增了泛型及型別別名的語法支援。在之前的版本中,泛型類別必須顯性繼承Generic 或是包含一個型別變數在基底類別 (base) 當中。

使用者定義的參數運算式 (parameter expression) 泛型一樣有支援,透過[**P] 格式的參數規格變數來進行表示。對於上述作為參數規格變數的型別變數,將持續被typing 模組視為一個特定的型別變數。對此,其中一個例外是一個型別列表可以替代ParamSpec

>>>classZ[T,**P]:...# T 為 TypeVar;P 為 ParamSpec...>>>Z[int,[dict,float]]__main__.Z[int, [dict, float]]

具有ParamSpec 的泛型類別可以透過顯性繼承Generic 進行建立。在這種情況下,不需要使用**

fromtypingimportParamSpec,GenericP=ParamSpec('P')classZ(Generic[P]):...

另外一個TypeVar 以及ParamSpec 之間的差異是,基於美觀因素,只有一個參數規格變數的泛型可以接受如X[[Type1,Type2,...]] 以及X[Type1,Type2,...] 的參數列表。在內部中,後者會被轉換為前者,所以在下方的範例中為相等的:

>>>classX[**P]:......>>>X[int,str]__main__.X[[int, str]]>>>X[[int,str]]__main__.X[[int, str]]

請記得,具有ParamSpec 的泛型在某些情況下替換之後可能不會有正確的__parameters__,因為參數規格主要還是用於靜態型別檢查。

在 3.10 版的變更:Generic 現在可以透過參數運算式來進行參數化。詳細內容請見ParamSpec 以及PEP 612

一個使用者定義的泛型類別可以將 ABC 作為他們的基底類別,且不會有 metaclass 衝突。泛型的 metaclass 則不支援。參數化泛型的輸出將被存為快取,而在typing 模組中多數的型別皆為hashable 且可以比較相等性。

Any 型別

Any 是一種特別的型別。一個靜態型別檢查器會將每個型別視為可相容於AnyAny 也可以相容於每個型別。

這意味著如果在一個為Any 的值上執行任何操作或呼叫方法是可行的,且可以賦值給任意變數:

fromtypingimportAnya:Any=Nonea=[]# OKa=2# OKs:str=''s=a# OKdeffoo(item:Any)->int:# Passes type checking; 'item' could be any type,# and that type might have a 'bar' methoditem.bar()...

請注意,當賦予型別為Any 的值更精確的型別時,將不會執行任何型別檢查。舉例來說,靜態型別檢查器不會在 runtime 中,將a 賦值給s 的情況下回報錯誤,儘管s 是被宣告為型別str 卻接收到int 的值!

另外,所有缺少回傳型別或參數型別的函式將會隱性預設為Any

deflegacy_parser(text):...returndata# A static type checker will treat the above# as having the same signature as:deflegacy_parser(text:Any)->Any:...returndata

當你需要混和動態及靜態的型別程式碼,這個行為允許Any 被當作一個緊急出口 (escape hatch)使用。

Any 的行為對比object 的行為。與Any 相似,所有的型別會作為object 的子型別。然而,不像Any,反之不亦然:object不是一個其他型別的子型別。

這意味著當一個值的型別為object 時,型別檢查器會拒絕幾乎所有的操作,並將賦予這個值到一個特定型別變數(或是當作回傳值使用)視為一個型別錯誤。舉例來說:

defhash_a(item:object)->int:# Fails type checking; an object does not have a 'magic' method.item.magic()...defhash_b(item:Any)->int:# Passes type checkingitem.magic()...# Passes type checking, since ints and strs are subclasses of objecthash_a(42)hash_a("foo")# Passes type checking, since Any is compatible with all typeshash_b(42)hash_b("foo")

使用object ,將指出在型別安全 (typesafe) 的習慣之下一個值可以為任意型別。使用Any,將指出這個值是個動態型別。

標稱 (nominal) 子型別 vs 結構子型別

最初PEP 484 定義 Python 靜態型別系統使用標稱子型別。這意味著只有AB 的子類別時,A 才被允許使用在預期是類別B 出現的地方。

這個需求之前也被運用在抽象基底類別,例如Iterable。這種方式的問題在於,一個類別需要顯式的標記來支援他們,這並不符合 Python 風格,也不像一個常見的慣用動態型別 Python 程式碼。舉例來說,下列程式碼符合PEP 484

fromcollections.abcimportSized,Iterable,IteratorclassBucket(Sized,Iterable[int]):...def__len__(self)->int:...def__iter__(self)->Iterator[int]:...

PEP 544 可以透過使用上方的程式碼,且在類別定義時不用顯式基底類別解決這個問題,讓Bucket 被靜態型別檢查器隱性認為是Sized 以及Iterable[int] 兩者的子型別。這就是眾所周知的結構子型別(或是靜態鴨子型別):

fromcollections.abcimportIterator,IterableclassBucket:# 注意:沒有基底類別...def__len__(self)->int:...def__iter__(self)->Iterator[int]:...defcollect(items:Iterable[int])->int:...result=collect(Bucket())# Passes type check

而且,基於一個特別的型別Protocol 建立子型別時,使用者可以定義新的協定並充份發揮結構子型別的優勢(請見下方範例)。

模組內容

模組typing 定義了下列的類別、函式以及裝飾器。

特別型別原語 (primitive)

特別型別

這些可以在註釋中做為型別。他們並不支援[] 的下標使用。

typing.Any

特別型別,指出一個不受約束 (unconstrained) 的型別。

  • 所有型別皆與Any 相容。

  • Any 相容於所有型別。

在 3.11 版的變更:Any 可以作為一個基礎類別。這對於在任何地方使用鴨子型別或是高度動態的型別,避免型別檢查器的錯誤是非常有用的。

typing.AnyStr

一個不受約束的型別變數

定義:

AnyStr=TypeVar('AnyStr',str,bytes)

AnyStr 是對於函式有用的,他可以接受strbytes 引數但不可以將此兩種混合。

舉例來說:

defconcat(a:AnyStr,b:AnyStr)->AnyStr:returna+bconcat("foo","bar")# OK, output has type 'str'concat(b"foo",b"bar")# OK, output has type 'bytes'concat("foo",b"bar")# Error, cannot mix str and bytes

請注意,儘管他的名稱相近,AnyStrAny 型別無關,更不代表是「任何字串」的意思。尤其,AnyStrstr|bytes 兩者不同且具有不同的使用情境:

# Invalid use of AnyStr:# The type variable is used only once in the function signature,# so cannot be "solved" by the type checkerdefgreet_bad(cond:bool)->AnyStr:return"hi there!"ifcondelseb"greetings!"# The better way of annotating this function:defgreet_proper(cond:bool)->str|bytes:return"hi there!"ifcondelseb"greetings!"

Deprecated since version 3.13, will be removed in version 3.18:Deprecated in favor of the newtype parameter syntax.UseclassA[T:(str,bytes)]:... instead of importingAnyStr. SeePEP 695 for more details.

In Python 3.16,AnyStr will be removed fromtyping.__all__, anddeprecation warnings will be emitted at runtime when it is accessed orimported fromtyping.AnyStr will be removed fromtypingin Python 3.18.

typing.LiteralString

特別型別,只包含文本字串。

任何文本字串都相容於LiteralString,對於另一個LiteralString 亦是如此。然而,若是一個型別僅為str 的物件則不相容。一個字串若是透過組合多個LiteralString 型別的物件建立,則此字串也可以視為LiteralString

舉例來說:

defrun_query(sql:LiteralString)->None:...defcaller(arbitrary_string:str,literal_string:LiteralString)->None:run_query("SELECT * FROM students")# OKrun_query(literal_string)# OKrun_query("SELECT * FROM "+literal_string)# OKrun_query(arbitrary_string)# type checker errorrun_query(# type checker errorf"SELECT * FROM students WHERE name ={arbitrary_string}")

LiteralString 對於敏感的 API 來說是有用的,其中任意的使用者產生的字串可能會產生問題。舉例來說,上面兩個案例中產生的型別檢查器錯誤是脆弱的且容易受到 SQL 注入攻擊。

更多細節請見PEP 675

在 3.11 版被加入.

typing.Never
typing.NoReturn

NeverNoReturn 表示底部型別 (bottom type),為一個沒有任何成員的型別。

它們可以被用來代表一個不會回傳的函式,像是sys.exit()

fromtypingimportNever# 或 NoReturndefstop()->Never:raiseRuntimeError('no way')

或被用來定義一個不應被呼叫的函式,因為不會有有效的引數,、像是assert_never()

fromtypingimportNever# or NoReturndefnever_call_me(arg:Never)->None:passdefint_or_str(arg:int|str)->None:never_call_me(arg)# type checker errormatcharg:caseint():print("It's an int")casestr():print("It's a str")case_:never_call_me(arg)# OK, arg is of type Never (or NoReturn)

Never 以及NoReturn 在型別系統中具有相同的意義且靜態型別檢查器會將兩者視為相等。

在 3.6.2 版被加入:新增NoReturn

在 3.11 版被加入:新增Never

typing.Self

特別型別,用來表示目前類別之內 (enclosed class)。

舉例來說:

fromtypingimportSelf,reveal_typeclassFoo:defreturn_self(self)->Self:...returnselfclassSubclassOfFoo(Foo):passreveal_type(Foo().return_self())# Revealed type is "Foo"reveal_type(SubclassOfFoo().return_self())# Revealed type is "SubclassOfFoo"

這個註釋在語意上相等於下列內容,且形式更為簡潔:

fromtypingimportTypeVarSelf=TypeVar("Self",bound="Foo")classFoo:defreturn_self(self:Self)->Self:...returnself

一般來說,如果某個東西回傳self 如上方的範例所示,你則應該使用Self 做為回傳值的註釋。若Foo.return_self 被註釋為回傳"Foo",則型別檢查器應該推論這個從SubclassOfFoo.return_self 回傳的物件為Foo 型別,而並非回傳SubclassOfFoo 型別。

其他常見的使用案例包含:

  • classmethod 被用來作為替代的建構函式 (constructor) 並回傳cls 參數的實例。

  • 註釋一個回傳自己的__enter__() 方法。

當類別被子類別化時,若方法不保證回傳一個子類別的實例,你不應該使用Self 作為回傳註釋:

classEggs:# Self would be an incorrect return annotation here,# as the object returned is always an instance of Eggs,# even in subclassesdefreturns_eggs(self)->"Eggs":returnEggs()

更多細節請見PEP 673

在 3.11 版被加入.

typing.TypeAlias

做為明確宣告一個型別別名 的特別註釋。

舉例來說:

fromtypingimportTypeAliasFactors:TypeAlias=list[int]

TypeAlias 在舊的 Python 版本中特別有用,其註釋別名可以用來進行傳遞參照 (forward reference),因為對於型別檢查器來說,分辨這些別名與一般的變數賦值相當困難:

fromtypingimportGeneric,TypeAlias,TypeVarT=TypeVar("T")# "Box" does not exist yet,# so we have to use quotes for the forward reference on Python <3.12.# Using ``TypeAlias`` tells the type checker that this is a type alias declaration,# not a variable assignment to a string.BoxOfStrings:TypeAlias="Box[str]"classBox(Generic[T]):@classmethoddefmake_box_of_strings(cls)->BoxOfStrings:...

更多細節請見PEP 613

在 3.10 版被加入.

在 3.12 版之後被棄用:TypeAlias 被棄用,請改用type 陳述式來建立TypeAliasType 的實例,其自然可以支援傳遞參照的使用。請注意,雖然TypeAlias 以及TypeAliasType 提供相似的用途且具有相似的名稱,他們是不同的,且後者不是前者的型別。現在還沒有移除TypeAlias 的計畫,但鼓勵使用者們遷移 (migrate) 至type 陳述式。

特別型式

這些在註釋中可以當作型別使用。他們全都支援[] 的下標使用,但每個都具有獨特的語法。

typing.Union

聯集型別;Union[X,Y]X|Y 是相等的,且都意味著 X 或 Y 兩者其一。

為了定義聯集,例如可以使用Union[int,str] 或是使用簡寫 (shorthand)int|str。使用這種簡寫是非常推薦的。詳細請看:

  • 引數必須為型別且必須有至少一個。

  • 聯集中的聯集會是扁平化的 (flattened),舉例來說:

    Union[Union[int,str],float]==Union[int,str,float]

    However, this does not apply to unions referenced through a typealias, to avoid forcing evaluation of the underlyingTypeAliasType:

    typeA=Union[int,str]Union[A,float]!=Union[int,str,float]
  • 單一引數的聯集會消失不見,舉例來說:

    Union[int]==int# 實際上建構函式會回傳 int
  • 多餘的引數會被略過,舉例來說:

    Union[int,str,int]==Union[int,str]==int|str
  • 當比較聯集時,引數的順序會被忽略,舉例來說:

    Union[int,str]==Union[str,int]
  • 你不能建立Union 的子類別或是實例。

  • 你不能寫成Union[X][Y]

在 3.7 版的變更:請勿在 runtime 中將顯性子類別從聯集中移除。

在 3.10 版的變更:現在可以將聯集寫成X|Y。請見聯集型別運算式

typing.Optional

Optional[X]X|None 是相等的(或是Union[X,None])。

請注意,這與具有預設值的選擇性引數 (optional argument) 不是相同的概念。一個具有預設值的選擇性引數的型別註釋中不具有Optional 限定符 (qualifier),單純的因為它就是選擇性的。舉例來說:

deffoo(arg:int=0)->None:...

另一方面,如果一個顯性的值None 是被允許的,不論引數是不是選擇性的,Optional 都適用。舉例來說:

deffoo(arg:Optional[int]=None)->None:...

在 3.10 版的變更:現在可以將 Optional 寫成X|None。請見聯集型別運算式

typing.Concatenate

用於註釋高階函式的特別型式。

Concatenate 可以被用在可呼叫物件ParamSpec 的接合 (conjunction) 並註釋一個高階的 Callable 物件可以新增、移除、轉換另一個 Callable 物件的參數。使用方法是依照這個格式Concatenate[Arg1Type,Arg2Type,...,ParamSpecVariable]Concatenate 目前只在Callable 物件中第一個引數使用時有效。Concatenate 的最後一個參數必須為一個ParamSpec 或是刪節號 (...)。

舉例來說,註釋一個為裝飾過後的函式提供threading.Lock 的裝飾器with_lockConcatenate 可以用於指出with_lock 預期一個 Callable 物件,該物件可以接受Lock 作為第一引數,並回傳一個具有不同型別簽名 Callable 物件。在這種情況下,ParamSpec 指出回傳的 Callable 物件的參數型別會依賴傳遞的 Callable 物件的參數型別:

fromcollections.abcimportCallablefromthreadingimportLockfromtypingimportConcatenate# Use this lock to ensure that only one thread is executing a function# at any time.my_lock=Lock()defwith_lock[**P,R](f:Callable[Concatenate[Lock,P],R])->Callable[P,R]:'''A type-safe decorator which provides a lock.'''definner(*args:P.args,**kwargs:P.kwargs)->R:# Provide the lock as the first argument.returnf(my_lock,*args,**kwargs)returninner@with_lockdefsum_threadsafe(lock:Lock,numbers:list[float])->float:'''Add a list of numbers together in a thread-safe manner.'''withlock:returnsum(numbers)# We don't need to pass in the lock ourselves thanks to the decorator.sum_threadsafe([1.1,2.2,3.3])

在 3.10 版被加入.

也參考

typing.Literal

特殊型別格式,用於定義「文本型別 (literal type)」。

Literal 可以用於型別檢查器並指出註釋物件具有一個與提供的文本相同的值。

舉例來說:

defvalidate_simple(data:Any)->Literal[True]:# always returns True...typeMode=Literal['r','rb','w','wb']defopen_helper(file:str,mode:Mode)->str:...open_helper('/some/path','r')# Passes type checkopen_helper('/other/path','typo')# Error in type checker

Literal[...] 不可以進行子類別化。在 runtime 之中,任意的值是允許作為Literal[...] 的型別引數,但型別檢查器可能會加強限制。更多有關文本型別的詳細資訊請看PEP 586

其他細節:

  • 引數必須為文本值且必須有至少一個。

  • 巢狀的Literal 會是扁平化的 (flattened),舉例來說:

    assertLiteral[Literal[1,2],3]==Literal[1,2,3]

    However, this does not apply toLiteral types referenced through a typealias, to avoid forcing evaluation of the underlyingTypeAliasType:

    typeA=Literal[1,2]assertLiteral[A,3]!=Literal[1,2,3]
  • 多餘的引數會被略過,舉例來說:

    assertLiteral[1,2,1]==Literal[1,2]
  • 當比較文本時,引數的順序會被忽略,舉例來說:

    assertLiteral[1,2]==Literal[2,1]
  • 你不能建立Literal 的子類別或是實例。

  • 你不能寫成Literal[X][Y]

在 3.8 版被加入.

在 3.9.1 版的變更:Literal 現在可以刪除重複 (de-deplicate) 的參數。Literal 物件的相等性比較不再依照相依性排序。Literal 物件現在會在相等性比較期間,若任一個其中的參數無法hashable 時,則會引發一個TypeError 例外。

typing.ClassVar

特殊型別建構,用來標記類別變數。

如同在PEP 526 中的介紹,一個變數註解被包裝在 ClassVar 中時,會指出一個給定的屬性 (attribute) 意圖被當作類別變數使用,且不該被設定成該類別的實例。使用方法如下:

classStarship:stats:ClassVar[dict[str,int]]={}# 類別變數damage:int=10# 實例變數

ClassVar 只接受型別請不得使用下標。

ClassVar 並不代表該類別本身,而且不應該和isinstance() 或是issubclass() 一起使用。ClassVar 不會改變 Python runtime 的行為,但它可以被第三方的型別檢查器使用。舉例來說,一個型別檢查器可能會標記下方的程式碼為一個錯誤:

enterprise_d=Starship(3000)enterprise_d.stats={}# Error, setting class variable on instanceStarship.stats={}# This is OK

在 3.5.3 版被加入.

在 3.13 版的變更:ClassVar can now be nested inFinal and vice versa.

typing.Final

特殊型別建構,用來指出給型別檢查器的最終名稱。

最終名稱不可以在任何作用域 (scope) 中重新賦值。在類別作用域中宣告的最終名稱,不得在子類別中進行覆寫 (override)。

舉例來說:

MAX_SIZE:Final=9000MAX_SIZE+=1# Error reported by type checkerclassConnection:TIMEOUT:Final[int]=10classFastConnector(Connection):TIMEOUT=1# Error reported by type checker

這些屬性 (property) 不會在 runtime 時進行檢查。更多詳細資訊請看PEP 591

在 3.8 版被加入.

在 3.13 版的變更:Final can now be nested inClassVar and vice versa.

typing.Required

特殊型別建構,用來標記一個TypedDict 鍵值是必須的。

主要用於total=False 的 TypedDict。更多細節請見TypedDictPEP 655

在 3.11 版被加入.

typing.NotRequired

特殊型別建構,用來標記一個TypedDict 鍵值是可能消失的。

更多細節請見TypedDictPEP 655

在 3.11 版被加入.

typing.ReadOnly

特殊型別建構,用來標記一個TypedDict 的項目是唯讀的。

舉例來說:

classMovie(TypedDict):title:ReadOnly[str]year:intdefmutate_movie(m:Movie)->None:m["year"]=1999# allowedm["title"]="The Matrix"# 型別檢查器錯誤

這些屬性 (property) 不會在 runtime 時進行檢查。

更多細節請見TypedDictPEP 705

在 3.13 版被加入.

typing.Annotated

Special typing form to add context-specific metadata to an annotation.

Add metadatax to a given typeT by using the annotationAnnotated[T,x]. Metadata added usingAnnotated can be used bystatic analysis tools or at runtime. At runtime, the metadata is storedin a__metadata__ attribute.

If a library or tool encounters an annotationAnnotated[T,x] and hasno special logic for the metadata, it should ignore the metadata and simplytreat the annotation asT. As such,Annotated can be useful for codethat wants to use annotations for purposes outside Python's static typingsystem.

UsingAnnotated[T,x] as an annotation still allows for statictypechecking ofT, as type checkers will simply ignore the metadatax.In this way,Annotated differs from the@no_type_check decorator, which can also be used foradding annotations outside the scope of the typing system, butcompletely disables typechecking for a function or class.

The responsibility of how to interpret the metadatalies with the tool or library encountering anAnnotated annotation. A tool or library encountering anAnnotated typecan scan through the metadata elements to determine if they are of interest(e.g., usingisinstance()).

Annotated[<type>,<metadata>]

Here is an example of how you might useAnnotated to add metadata totype annotations if you were doing range analysis:

@dataclassclassValueRange:lo:inthi:intT1=Annotated[int,ValueRange(-10,5)]T2=Annotated[T1,ValueRange(-20,3)]

The first argument toAnnotated must be a valid type. Multiple metadataelements can be supplied asAnnotated supports variadic arguments. Theorder of the metadata elements is preserved and matters for equality checks:

@dataclassclassctype:kind:stra1=Annotated[int,ValueRange(3,10),ctype("char")]a2=Annotated[int,ctype("char"),ValueRange(3,10)]asserta1!=a2# 順序是有意義的

It is up to the tool consuming the annotations to decide whether theclient is allowed to add multiple metadata elements to one annotation and how tomerge those annotations.

NestedAnnotated types are flattened. The order of the metadata elementsstarts with the innermost annotation:

assertAnnotated[Annotated[int,ValueRange(3,10)],ctype("char")]==Annotated[int,ValueRange(3,10),ctype("char")]

However, this does not apply toAnnotated types referenced through a typealias, to avoid forcing evaluation of the underlyingTypeAliasType:

typeFrom3To10[T]=Annotated[T,ValueRange(3,10)]assertAnnotated[From3To10[int],ctype("char")]!=Annotated[int,ValueRange(3,10),ctype("char")]

Duplicated metadata elements are not removed:

assertAnnotated[int,ValueRange(3,10)]!=Annotated[int,ValueRange(3,10),ValueRange(3,10)]

Annotated can be used with nested and generic aliases:

@dataclassclassMaxLen:value:inttypeVec[T]=Annotated[list[tuple[T,T]],MaxLen(10)]# When used in a type annotation, a type checker will treat "V" the same as# ``Annotated[list[tuple[int, int]], MaxLen(10)]``:typeV=Vec[int]

Annotated cannot be used with an unpackedTypeVarTuple:

typeVariadic[*Ts]=Annotated[*Ts,Ann1]=Annotated[T1,T2,T3,...,Ann1]# 無效

whereT1,T2, ... areTypeVars. This is invalid asonly one type should be passed to Annotated.

By default,get_type_hints() strips the metadata from annotations.Passinclude_extras=True to have the metadata preserved:

>>>fromtypingimportAnnotated,get_type_hints>>>deffunc(x:Annotated[int,"metadata"])->None:pass...>>>get_type_hints(func){'x': <class 'int'>, 'return': <class 'NoneType'>}>>>get_type_hints(func,include_extras=True){'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}

At runtime, the metadata associated with anAnnotated type can beretrieved via the__metadata__ attribute:

>>>fromtypingimportAnnotated>>>X=Annotated[int,"very","important","metadata"]>>>Xtyping.Annotated[int, 'very', 'important', 'metadata']>>>X.__metadata__('very', 'important', 'metadata')

If you want to retrieve the original type wrapped byAnnotated, use the__origin__ attribute:

>>>fromtypingimportAnnotated,get_origin>>>Password=Annotated[str,"secret"]>>>Password.__origin__<class 'str'>

Note that usingget_origin() will returnAnnotated itself:

>>>get_origin(Password)typing.Annotated

也參考

PEP 593 - Flexible function and variable annotations

The PEP introducingAnnotated to the standard library.

在 3.9 版被加入.

typing.TypeIs

Special typing construct for marking user-defined type predicate functions.

TypeIs can be used to annotate the return type of a user-definedtype predicate function.TypeIs only accepts a single type argument.At runtime, functions marked this way should return a boolean and take atleast one positional argument.

TypeIs aims to benefittype narrowing -- a technique used by statictype checkers to determine a more precise type of an expression within aprogram's code flow. Usually type narrowing is done by analyzingconditional code flow and applying the narrowing to a block of code. Theconditional expression here is sometimes referred to as a "type predicate":

defis_str(val:str|float):# "isinstance" type predicateifisinstance(val,str):# Type of ``val`` is narrowed to ``str``...else:# Else, type of ``val`` is narrowed to ``float``....

Sometimes it would be convenient to use a user-defined boolean functionas a type predicate. Such a function should useTypeIs[...] orTypeGuard as its return type to alert static type checkers tothis intention.TypeIs usually has more intuitive behavior thanTypeGuard, but it cannot be used when the input and output typesare incompatible (e.g.,list[object] tolist[int]) or when thefunction does not returnTrue for all instances of the narrowed type.

Using->TypeIs[NarrowedType] tells the static type checker that for a givenfunction:

  1. 回傳值是一個布林值。

  2. If the return value isTrue, the type of its argumentis the intersection of the argument's original type andNarrowedType.

  3. If the return value isFalse, the type of its argumentis narrowed to excludeNarrowedType.

舉例來說:

fromtypingimportassert_type,final,TypeIsclassParent:passclassChild(Parent):pass@finalclassUnrelated:passdefis_parent(val:object)->TypeIs[Parent]:returnisinstance(val,Parent)defrun(arg:Child|Unrelated):ifis_parent(arg):# Type of ``arg`` is narrowed to the intersection# of ``Parent`` and ``Child``, which is equivalent to# ``Child``.assert_type(arg,Child)else:# Type of ``arg`` is narrowed to exclude ``Parent``,# so only ``Unrelated`` is left.assert_type(arg,Unrelated)

The type insideTypeIs must be consistent with the type of thefunction's argument; if it is not, static type checkers will raisean error. An incorrectly writtenTypeIs function can lead tounsound behavior in the type system; it is the user's responsibilityto write such functions in a type-safe manner.

If aTypeIs function is a class or instance method, then the type inTypeIs maps to the type of the second parameter (aftercls orself).

In short, the formdeffoo(arg:TypeA)->TypeIs[TypeB]:...,means that iffoo(arg) returnsTrue, thenarg is an instanceofTypeB, and if it returnsFalse, it is not an instance ofTypeB.

TypeIs also works with type variables. For more information, seePEP 742 (Narrowing types withTypeIs).

在 3.13 版被加入.

typing.TypeGuard

Special typing construct for marking user-defined type predicate functions.

Type predicate functions are user-defined functions that return whether theirargument is an instance of a particular type.TypeGuard works similarly toTypeIs, but has subtly differenteffects on type checking behavior (see below).

Using->TypeGuard tells the static type checker that for a givenfunction:

  1. 回傳值是一個布林值。

  2. If the return value isTrue, the type of its argumentis the type insideTypeGuard.

TypeGuard also works with type variables. SeePEP 647 for more details.

舉例來說:

defis_str_list(val:list[object])->TypeGuard[list[str]]:'''Determines whether all objects in the list are strings'''returnall(isinstance(x,str)forxinval)deffunc1(val:list[object]):ifis_str_list(val):# Type of ``val`` is narrowed to ``list[str]``.print(" ".join(val))else:# Type of ``val`` remains as ``list[object]``.print("Not a list of strings!")

TypeIsTypeGuard 在以下幾個方面有所不同:

  • TypeIs requires the narrowed type to be a subtype of the input type, whileTypeGuard does not. The main reason is to allow for things likenarrowinglist[object] tolist[str] even though the latteris not a subtype of the former, sincelist is invariant.

  • When aTypeGuard function returnsTrue, type checkers narrow the type of thevariable to exactly theTypeGuard type. When aTypeIs function returnsTrue,type checkers can infer a more precise type combining the previously known type of thevariable with theTypeIs type. (Technically, this is known as an intersection type.)

  • When aTypeGuard function returnsFalse, type checkers cannot narrow the type ofthe variable at all. When aTypeIs function returnsFalse, type checkers can narrowthe type of the variable to exclude theTypeIs type.

在 3.10 版被加入.

typing.Unpack

Typing operator to conceptually mark an object as having been unpacked.

For example, using the unpack operator* on atype variable tuple is equivalent to usingUnpackto mark the type variable tuple as having been unpacked:

Ts=TypeVarTuple('Ts')tup:tuple[*Ts]# Effectively does:tup:tuple[Unpack[Ts]]

In fact,Unpack can be used interchangeably with* in the contextoftyping.TypeVarTuple andbuiltins.tuple types. You might seeUnpack being usedexplicitly in older versions of Python, where* couldn't be used incertain places:

# In older versions of Python, TypeVarTuple and Unpack# are located in the `typing_extensions` backports package.fromtyping_extensionsimportTypeVarTuple,UnpackTs=TypeVarTuple('Ts')tup:tuple[*Ts]# Syntax error on Python <= 3.10!tup:tuple[Unpack[Ts]]# Semantically equivalent, and backwards-compatible

Unpack can also be used along withtyping.TypedDict for typing**kwargs in a function signature:

fromtypingimportTypedDict,UnpackclassMovie(TypedDict):name:stryear:int# This function expects two keyword arguments - `name` of type `str`# and `year` of type `int`.deffoo(**kwargs:Unpack[Movie]):...

SeePEP 692 for more details on usingUnpack for**kwargs typing.

在 3.11 版被加入.

Building generic types and type aliases

The following classes should not be used directly as annotations.Their intended purpose is to be building blocksfor creating generic types and type aliases.

These objects can be created through special syntax(type parameter lists and thetype statement).For compatibility with Python 3.11 and earlier, they can also be createdwithout the dedicated syntax, as documented below.

classtyping.Generic

Abstract base class for generic types.

A generic type is typically declared by adding a list of type parametersafter the class name:

classMapping[KT,VT]:def__getitem__(self,key:KT)->VT:...# Etc.

Such a class implicitly inherits fromGeneric.The runtime semantics of this syntax are discussed in theLanguage Reference.

This class can then be used as follows:

deflookup_name[X,Y](mapping:Mapping[X,Y],key:X,default:Y)->Y:try:returnmapping[key]exceptKeyError:returndefault

Here the brackets after the function name indicate ageneric function.

For backwards compatibility, generic classes can also bedeclared by explicitly inheriting fromGeneric. In this case, the type parameters must be declaredseparately:

KT=TypeVar('KT')VT=TypeVar('VT')classMapping(Generic[KT,VT]):def__getitem__(self,key:KT)->VT:...# Etc.
classtyping.TypeVar(name,*constraints,bound=None,covariant=False,contravariant=False,infer_variance=False,default=typing.NoDefault)

Type variable.

The preferred way to construct a type variable is via the dedicated syntaxforgeneric functions,generic classes, andgeneric type aliases:

classSequence[T]:# T 是一個 TypeVar...

This syntax can also be used to create bounded and constrained typevariables:

classStrSequence[S:str]:# S is a TypeVar with a `str` upper bound;...# we can say that S is "bounded by `str`"classStrOrBytesSequence[A:(str,bytes)]:# A is a TypeVar constrained to str or bytes...

However, if desired, reusable type variables can also be constructed manually, like so:

T=TypeVar('T')# 可以是任何東西S=TypeVar('S',bound=str)# 可以是任何 str 的子型別A=TypeVar('A',str,bytes)# 必須是 str 或 bytes

Type variables exist primarily for the benefit of static typecheckers. They serve as the parameters for generic types as wellas for generic function and type alias definitions.SeeGeneric for moreinformation on generic types. Generic functions work as follows:

defrepeat[T](x:T,n:int)->Sequence[T]:"""Return a list containing n references to x."""return[x]*ndefprint_capitalized[S:str](x:S)->S:"""Print x capitalized, and return x."""print(x.capitalize())returnxdefconcatenate[A:(str,bytes)](x:A,y:A)->A:"""Add two strings or bytes objects together."""returnx+y

Note that type variables can bebounded,constrained, or neither, butcannot be both boundedand constrained.

The variance of type variables is inferred by type checkers when they are createdthrough thetype parameter syntax or wheninfer_variance=True is passed.Manually created type variables may be explicitly marked covariant or contravariant by passingcovariant=True orcontravariant=True.By default, manually created type variables are invariant.SeePEP 484 andPEP 695 for more details.

Bounded type variables and constrained type variables have differentsemantics in several important ways. Using abounded type variable meansthat theTypeVar will be solved using the most specific type possible:

x=print_capitalized('a string')reveal_type(x)# revealed type is strclassStringSubclass(str):passy=print_capitalized(StringSubclass('another string'))reveal_type(y)# revealed type is StringSubclassz=print_capitalized(45)# error: int is not a subtype of str

The upper bound of a type variable can be a concrete type, abstract type(ABC or Protocol), or even a union of types:

# Can be anything with an __abs__ methoddefprint_abs[T:SupportsAbs](arg:T)->None:print("Absolute value:",abs(arg))U=TypeVar('U',bound=str|bytes)# Can be any subtype of the union str|bytesV=TypeVar('V',bound=SupportsAbs)# Can be anything with an __abs__ method

Using aconstrained type variable, however, means that theTypeVarcan only ever be solved as being exactly one of the constraints given:

a=concatenate('one','two')reveal_type(a)# revealed type is strb=concatenate(StringSubclass('one'),StringSubclass('two'))reveal_type(b)# revealed type is str, despite StringSubclass being passed inc=concatenate('one',b'two')# error: type variable 'A' can be either str or bytes in a function call, but not both

在 runtimeisinstance(x,T) 會引發TypeError

__name__

The name of the type variable.

__covariant__

Whether the type var has been explicitly marked as covariant.

__contravariant__

Whether the type var has been explicitly marked as contravariant.

__infer_variance__

Whether the type variable's variance should be inferred by type checkers.

在 3.12 版被加入.

__bound__

The upper bound of the type variable, if any.

在 3.12 版的變更:For type variables created throughtype parameter syntax,the bound is evaluated only when the attribute is accessed, not whenthe type variable is created (seeLazy evaluation).

__constraints__

A tuple containing the constraints of the type variable, if any.

在 3.12 版的變更:For type variables created throughtype parameter syntax,the constraints are evaluated only when the attribute is accessed, not whenthe type variable is created (seeLazy evaluation).

__default__

The default value of the type variable, ortyping.NoDefault if ithas no default.

在 3.13 版被加入.

has_default()

Return whether or not the type variable has a default value. This is equivalentto checking whether__default__ is not thetyping.NoDefaultsingleton, except that it does not force evaluation of thelazily evaluated default value.

在 3.13 版被加入.

在 3.12 版的變更:Type variables can now be declared using thetype parameter syntax introduced byPEP 695.Theinfer_variance parameter was added.

在 3.13 版的變更:新增對預設值的支援。

classtyping.TypeVarTuple(name,*,default=typing.NoDefault)

Type variable tuple. A specialized form oftype variablethat enablesvariadic generics.

Type variable tuples can be declared intype parameter listsusing a single asterisk (*) before the name:

defmove_first_element_to_last[T,*Ts](tup:tuple[T,*Ts])->tuple[*Ts,T]:return(*tup[1:],tup[0])

Or by explicitly invoking theTypeVarTuple constructor:

T=TypeVar("T")Ts=TypeVarTuple("Ts")defmove_first_element_to_last(tup:tuple[T,*Ts])->tuple[*Ts,T]:return(*tup[1:],tup[0])

A normal type variable enables parameterization with a single type. A typevariable tuple, in contrast, allows parameterization with anarbitrary number of types by acting like anarbitrary number of typevariables wrapped in a tuple. For example:

# T is bound to int, Ts is bound to ()# Return value is (1,), which has type tuple[int]move_first_element_to_last(tup=(1,))# T is bound to int, Ts is bound to (str,)# Return value is ('spam', 1), which has type tuple[str, int]move_first_element_to_last(tup=(1,'spam'))# T is bound to int, Ts is bound to (str, float)# Return value is ('spam', 3.0, 1), which has type tuple[str, float, int]move_first_element_to_last(tup=(1,'spam',3.0))# This fails to type check (and fails at runtime)# because tuple[()] is not compatible with tuple[T, *Ts]# (at least one element is required)move_first_element_to_last(tup=())

Note the use of the unpacking operator* intuple[T,*Ts].Conceptually, you can think ofTs as a tuple of type variables(T1,T2,...).tuple[T,*Ts] would then becometuple[T,*(T1,T2,...)], which is equivalent totuple[T,T1,T2,...]. (Note that in older versions of Python, you mightsee this written usingUnpack instead, asUnpack[Ts].)

Type variable tuples mustalways be unpacked. This helps distinguish typevariable tuples from normal type variables:

x:Ts# 無效x:tuple[Ts]# 無效x:tuple[*Ts]# 正確的做法

Type variable tuples can be used in the same contexts as normal typevariables. For example, in class definitions, arguments, and return types:

classArray[*Shape]:def__getitem__(self,key:tuple[*Shape])->float:...def__abs__(self)->"Array[*Shape]":...defget_shape(self)->tuple[*Shape]:...

Type variable tuples can be happily combined with normal type variables:

classArray[DType,*Shape]:# This is finepassclassArray2[*Shape,DType]:# This would also be finepassclassHeight:...classWidth:...float_array_1d:Array[float,Height]=Array()# Totally fineint_array_2d:Array[int,Height,Width]=Array()# Yup, fine too

However, note that at most one type variable tuple may appear in a singlelist of type arguments or type parameters:

x:tuple[*Ts,*Ts]# 無效classArray[*Shape,*Shape]:# 無效pass

Finally, an unpacked type variable tuple can be used as the type annotationof*args:

defcall_soon[*Ts](callback:Callable[[*Ts],None],*args:*Ts)->None:...callback(*args)

In contrast to non-unpacked annotations of*args - e.g.*args:int,which would specify thatall arguments areint -*args:*Tsenables reference to the types of theindividual arguments in*args.Here, this allows us to ensure the types of the*args passedtocall_soon match the types of the (positional) arguments ofcallback.

SeePEP 646 for more details on type variable tuples.

__name__

The name of the type variable tuple.

__default__

The default value of the type variable tuple, ortyping.NoDefault if ithas no default.

在 3.13 版被加入.

has_default()

Return whether or not the type variable tuple has a default value. This is equivalentto checking whether__default__ is not thetyping.NoDefaultsingleton, except that it does not force evaluation of thelazily evaluated default value.

在 3.13 版被加入.

在 3.11 版被加入.

在 3.12 版的變更:Type variable tuples can now be declared using thetype parameter syntax introduced byPEP 695.

在 3.13 版的變更:新增對預設值的支援。

classtyping.ParamSpec(name,*,bound=None,covariant=False,contravariant=False,default=typing.NoDefault)

Parameter specification variable. A specialized version oftype variables.

Intype parameter lists, parameter specificationscan be declared with two asterisks (**):

typeIntFunc[**P]=Callable[P,int]

For compatibility with Python 3.11 and earlier,ParamSpec objectscan also be created as follows:

P=ParamSpec('P')

Parameter specification variables exist primarily for the benefit of statictype checkers. They are used to forward the parameter types of onecallable to another callable -- a pattern commonly found in higher orderfunctions and decorators. They are only valid when used inConcatenate,or as the first argument toCallable, or as parameters for user-definedGenerics. SeeGeneric for more information on generic types.

For example, to add basic logging to a function, one can create a decoratoradd_logging to log function calls. The parameter specification variabletells the type checker that the callable passed into the decorator and thenew callable returned by it have inter-dependent type parameters:

fromcollections.abcimportCallableimportloggingdefadd_logging[T,**P](f:Callable[P,T])->Callable[P,T]:'''A type-safe decorator to add logging to a function.'''definner(*args:P.args,**kwargs:P.kwargs)->T:logging.info(f'{f.__name__} was called')returnf(*args,**kwargs)returninner@add_loggingdefadd_two(x:float,y:float)->float:'''Add two numbers together.'''returnx+y

WithoutParamSpec, the simplest way to annotate this previously was touse aTypeVar with upper boundCallable[...,Any]. However thiscauses two problems:

  1. The type checker can't type check theinner function because*args and**kwargs have to be typedAny.

  2. cast() may be required in the body of theadd_loggingdecorator when returning theinner function, or the static typechecker must be told to ignore thereturninner.

args
kwargs

SinceParamSpec captures both positional and keyword parameters,P.args andP.kwargs can be used to split aParamSpec into itscomponents.P.args represents the tuple of positional parameters in agiven call and should only be used to annotate*args.P.kwargsrepresents the mapping of keyword parameters to their values in a given call,and should be only be used to annotate**kwargs. Bothattributes require the annotated parameter to be in scope. At runtime,P.args andP.kwargs are instances respectively ofParamSpecArgs andParamSpecKwargs.

__name__

The name of the parameter specification.

__default__

The default value of the parameter specification, ortyping.NoDefault if ithas no default.

在 3.13 版被加入.

has_default()

Return whether or not the parameter specification has a default value. This is equivalentto checking whether__default__ is not thetyping.NoDefaultsingleton, except that it does not force evaluation of thelazily evaluated default value.

在 3.13 版被加入.

Parameter specification variables created withcovariant=True orcontravariant=True can be used to declare covariant or contravariantgeneric types. Thebound argument is also accepted, similar toTypeVar. However the actual semantics of these keywords are yet tobe decided.

在 3.10 版被加入.

在 3.12 版的變更:Parameter specifications can now be declared using thetype parameter syntax introduced byPEP 695.

在 3.13 版的變更:新增對預設值的支援。

備註

Only parameter specification variables defined in global scope canbe pickled.

也參考

typing.ParamSpecArgs
typing.ParamSpecKwargs

Arguments and keyword arguments attributes of aParamSpec. TheP.args attribute of aParamSpec is an instance ofParamSpecArgs,andP.kwargs is an instance ofParamSpecKwargs. They are intendedfor runtime introspection and have no special meaning to static type checkers.

Callingget_origin() on either of these objects will return theoriginalParamSpec:

>>>fromtypingimportParamSpec,get_origin>>>P=ParamSpec("P")>>>get_origin(P.args)isPTrue>>>get_origin(P.kwargs)isPTrue

在 3.10 版被加入.

classtyping.TypeAliasType(name,value,*,type_params=())

The type of type aliases created through thetype statement.

舉例來說:

>>>typeAlias=int>>>type(Alias)<class 'typing.TypeAliasType'>

在 3.12 版被加入.

__name__

The name of the type alias:

>>>typeAlias=int>>>Alias.__name__'Alias'
__module__

The module in which the type alias was defined:

>>>typeAlias=int>>>Alias.__module__'__main__'
__type_params__

The type parameters of the type alias, or an empty tuple if the alias isnot generic:

>>>typeListOrSet[T]=list[T]|set[T]>>>ListOrSet.__type_params__(T,)>>>typeNotGeneric=int>>>NotGeneric.__type_params__()
__value__

The type alias's value. This islazily evaluated,so names used in the definition of the alias are not resolved until the__value__ attribute is accessed:

>>>typeMutually=Recursive>>>typeRecursive=Mutually>>>MutuallyMutually>>>RecursiveRecursive>>>Mutually.__value__Recursive>>>Recursive.__value__Mutually

Other special directives

These functions and classes should not be used directly as annotations.Their intended purpose is to be building blocks for creating and declaringtypes.

classtyping.NamedTuple

Typed version ofcollections.namedtuple().

用法:

classEmployee(NamedTuple):name:strid:int

這等價於:

Employee=collections.namedtuple('Employee',['name','id'])

To give a field a default value, you can assign to it in the class body:

classEmployee(NamedTuple):name:strid:int=3employee=Employee('Guido')assertemployee.id==3

Fields with a default value must come after any fields without a default.

The resulting class has an extra attribute__annotations__ giving adict that maps the field names to the field types. (The field names are inthe_fields attribute and the default values are in the_field_defaults attribute, both of which are part of thenamedtuple()API.)

NamedTuple subclasses can also have docstrings and methods:

classEmployee(NamedTuple):"""Represents an employee."""name:strid:int=3def__repr__(self)->str:returnf'<Employee{self.name}, id={self.id}>'

NamedTuple subclasses can be generic:

classGroup[T](NamedTuple):key:Tgroup:list[T]

Backward-compatible usage:

# For creating a generic NamedTuple on Python 3.11T=TypeVar("T")classGroup(NamedTuple,Generic[T]):key:Tgroup:list[T]# A functional syntax is also supportedEmployee=NamedTuple('Employee',[('name',str),('id',int)])

在 3.6 版的變更:Added support forPEP 526 variable annotation syntax.

在 3.6.1 版的變更:Added support for default values, methods, and docstrings.

在 3.8 版的變更:The_field_types and__annotations__ attributes arenow regular dictionaries instead of instances ofOrderedDict.

在 3.9 版的變更:Removed the_field_types attribute in favor of the morestandard__annotations__ attribute which has the same information.

在 3.11 版的變更:Added support for generic namedtuples.

Deprecated since version 3.13, will be removed in version 3.15:The undocumented keyword argument syntax for creating NamedTuple classes(NT=NamedTuple("NT",x=int)) is deprecated, and will be disallowedin 3.15. Use the class-based syntax or the functional syntax instead.

Deprecated since version 3.13, will be removed in version 3.15:When using the functional syntax to create a NamedTuple class, failing topass a value to the 'fields' parameter (NT=NamedTuple("NT")) isdeprecated. PassingNone to the 'fields' parameter(NT=NamedTuple("NT",None)) is also deprecated. Both will bedisallowed in Python 3.15. To create a NamedTuple class with 0 fields,useclassNT(NamedTuple):pass orNT=NamedTuple("NT",[]).

classtyping.NewType(name,tp)

Helper class to create low-overheaddistinct types.

ANewType is considered a distinct type by a typechecker. At runtime,however, calling aNewType returns its argument unchanged.

用法:

UserId=NewType('UserId',int)# Declare the NewType "UserId"first_user=UserId(1)# "UserId" returns the argument unchanged at runtime
__module__

The module in which the new type is defined.

__name__

The name of the new type.

__supertype__

The type that the new type is based on.

在 3.5.2 版被加入.

在 3.10 版的變更:NewType is now a class rather than a function.

classtyping.Protocol(Generic)

Base class for protocol classes.

Protocol classes are defined like this:

classProto(Protocol):defmeth(self)->int:...

Such classes are primarily used with static type checkers that recognizestructural subtyping (static duck-typing), for example:

classC:defmeth(self)->int:return0deffunc(x:Proto)->int:returnx.meth()func(C())# Passes static type check

SeePEP 544 for more details. Protocol classes decorated withruntime_checkable() (described later) act as simple-minded runtimeprotocols that check only the presence of given attributes, ignoring theirtype signatures. Protocol classes without this decorator cannot be usedas the second argument toisinstance() orissubclass().

Protocol classes can be generic, for example:

classGenProto[T](Protocol):defmeth(self)->T:...

In code that needs to be compatible with Python 3.11 or older, genericProtocols can be written as follows:

T=TypeVar("T")classGenProto(Protocol[T]):defmeth(self)->T:...

在 3.8 版被加入.

@typing.runtime_checkable

Mark a protocol class as a runtime protocol.

Such a protocol can be used withisinstance() andissubclass().This allows a simple-minded structural check, very similar to "one trick ponies"incollections.abc such asIterable. For example:

@runtime_checkableclassClosable(Protocol):defclose(self):...assertisinstance(open('/some/file'),Closable)@runtime_checkableclassNamed(Protocol):name:strimportthreadingassertisinstance(threading.Thread(name='Bob'),Named)

This decorator raisesTypeError when applied to a non-protocol class.

備註

runtime_checkable() will check only the presence of the requiredmethods or attributes, not their type signatures or types.For example,ssl.SSLObjectis a class, therefore it passes anissubclass()check againstCallable. However, thessl.SSLObject.__init__ method exists only to raise aTypeError with a more informative message, therefore makingit impossible to call (instantiate)ssl.SSLObject.

備註

Anisinstance() check against a runtime-checkable protocol can besurprisingly slow compared to anisinstance() check againsta non-protocol class. Consider using alternative idioms such ashasattr() calls for structural checks in performance-sensitivecode.

在 3.8 版被加入.

在 3.12 版的變更:The internal implementation ofisinstance() checks againstruntime-checkable protocols now usesinspect.getattr_static()to look up attributes (previously,hasattr() was used).As a result, some objects which used to be considered instancesof a runtime-checkable protocol may no longer be considered instancesof that protocol on Python 3.12+, and vice versa.Most users are unlikely to be affected by this change.

在 3.12 版的變更:The members of a runtime-checkable protocol are now considered "frozen"at runtime as soon as the class has been created. Monkey-patchingattributes onto a runtime-checkable protocol will still work, but willhave no impact onisinstance() checks comparing objects to theprotocol. See"What's new in Python 3.12"for more details.

classtyping.TypedDict(dict)

Special construct to add type hints to a dictionary.At runtime it is a plaindict.

TypedDict declares a dictionary type that expects all of itsinstances to have a certain set of keys, where each key isassociated with a value of a consistent type. This expectationis not checked at runtime but is only enforced by type checkers.Usage:

classPoint2D(TypedDict):x:inty:intlabel:stra:Point2D={'x':1,'y':2,'label':'good'}# OKb:Point2D={'z':3,'label':'bad'}# Fails type checkassertPoint2D(x=1,y=2,label='first')==dict(x=1,y=2,label='first')

An alternative way to create aTypedDict is by usingfunction-call syntax. The second argument must be a literaldict:

Point2D=TypedDict('Point2D',{'x':int,'y':int,'label':str})

This functional syntax allows defining keys which are not valididentifiers, for example because they arekeywords or contain hyphens, or when key names must not bemangled like regular private names:

# raises SyntaxErrorclassPoint2D(TypedDict):in:int# 'in' is a keywordx-y:int# name with hyphensclassDefinition(TypedDict):__schema:str# mangled to `_Definition__schema`# OK, functional syntaxPoint2D=TypedDict('Point2D',{'in':int,'x-y':int})Definition=TypedDict('Definition',{'__schema':str})# not mangled

By default, all keys must be present in aTypedDict. It is possible tomark individual keys as non-required usingNotRequired:

classPoint2D(TypedDict):x:inty:intlabel:NotRequired[str]# 替代語法Point2D=TypedDict('Point2D',{'x':int,'y':int,'label':NotRequired[str]})

This means that aPoint2DTypedDict can have thelabelkey omitted.

It is also possible to mark all keys as non-required by defaultby specifying a totality ofFalse:

classPoint2D(TypedDict,total=False):x:inty:int# 替代語法Point2D=TypedDict('Point2D',{'x':int,'y':int},total=False)

This means that aPoint2DTypedDict can have any of the keysomitted. A type checker is only expected to support a literalFalse orTrue as the value of thetotal argument.True is the default,and makes all items defined in the class body required.

Individual keys of atotal=FalseTypedDict can be marked asrequired usingRequired:

classPoint2D(TypedDict,total=False):x:Required[int]y:Required[int]label:str# 替代語法Point2D=TypedDict('Point2D',{'x':Required[int],'y':Required[int],'label':str},total=False)

It is possible for aTypedDict type to inherit from one or more otherTypedDict typesusing the class-based syntax.Usage:

classPoint3D(Point2D):z:int

Point3D has three items:x,y andz. It is equivalent to thisdefinition:

classPoint3D(TypedDict):x:inty:intz:int

ATypedDict cannot inherit from a non-TypedDict class,except forGeneric. For example:

classX(TypedDict):x:intclassY(TypedDict):y:intclassZ(object):pass# 一個非 TypedDict 的類別classXY(X,Y):pass# OKclassXZ(X,Z):pass# 引發 TypeError

ATypedDict can be generic:

classGroup[T](TypedDict):key:Tgroup:list[T]

To create a genericTypedDict that is compatible with Python 3.11or lower, inherit fromGeneric explicitly:

T=TypeVar("T")classGroup(TypedDict,Generic[T]):key:Tgroup:list[T]

ATypedDict can be introspected via annotations dicts(see註釋 (annotation) 最佳實踐 for more information on annotations best practices),__total__,__required_keys__, and__optional_keys__.

__total__

Point2D.__total__ gives the value of thetotal argument.Example:

>>>fromtypingimportTypedDict>>>classPoint2D(TypedDict):pass>>>Point2D.__total__True>>>classPoint2D(TypedDict,total=False):pass>>>Point2D.__total__False>>>classPoint3D(Point2D):pass>>>Point3D.__total__True

This attribute reflectsonly the value of thetotal argumentto the currentTypedDict class, not whether the class is semanticallytotal. For example, aTypedDict with__total__ set toTrue mayhave keys marked withNotRequired, or it may inherit from anotherTypedDict withtotal=False. Therefore, it is generally better to use__required_keys__ and__optional_keys__ for introspection.

__required_keys__

在 3.9 版被加入.

__optional_keys__

Point2D.__required_keys__ andPoint2D.__optional_keys__ returnfrozenset objects containing required and non-required keys, respectively.

Keys marked withRequired will always appear in__required_keys__and keys marked withNotRequired will always appear in__optional_keys__.

For backwards compatibility with Python 3.10 and below,it is also possible to use inheritance to declare both required andnon-required keys in the sameTypedDict . This is done by declaring aTypedDict with one value for thetotal argument and theninheriting from it in anotherTypedDict with a different value fortotal:

>>>classPoint2D(TypedDict,total=False):...x:int...y:int...>>>classPoint3D(Point2D):...z:int...>>>Point3D.__required_keys__==frozenset({'z'})True>>>Point3D.__optional_keys__==frozenset({'x','y'})True

在 3.9 版被加入.

備註

Iffrom__future__importannotations is used or if annotationsare given as strings, annotations are not evaluated when theTypedDict is defined. Therefore, the runtime introspection that__required_keys__ and__optional_keys__ rely on may not workproperly, and the values of the attributes may be incorrect.

Support forReadOnly is reflected in the following attributes:

__readonly_keys__

Afrozenset containing the names of all read-only keys. Keysare read-only if they carry theReadOnly qualifier.

在 3.13 版被加入.

__mutable_keys__

Afrozenset containing the names of all mutable keys. Keysare mutable if they do not carry theReadOnly qualifier.

在 3.13 版被加入.

SeePEP 589 for more examples and detailed rules of usingTypedDict.

在 3.8 版被加入.

在 3.11 版的變更:Added support for marking individual keys asRequired orNotRequired.SeePEP 655.

在 3.11 版的變更:Added support for genericTypedDicts.

在 3.13 版的變更:Removed support for the keyword-argument method of creatingTypedDicts.

在 3.13 版的變更:Support for theReadOnly qualifier was added.

Deprecated since version 3.13, will be removed in version 3.15:When using the functional syntax to create a TypedDict class, failing topass a value to the 'fields' parameter (TD=TypedDict("TD")) isdeprecated. PassingNone to the 'fields' parameter(TD=TypedDict("TD",None)) is also deprecated. Both will bedisallowed in Python 3.15. To create a TypedDict class with 0 fields,useclassTD(TypedDict):pass orTD=TypedDict("TD",{}).

協定

The following protocols are provided by thetyping module. All are decoratedwith@runtime_checkable.

classtyping.SupportsAbs

An ABC with one abstract method__abs__ that is covariantin its return type.

classtyping.SupportsBytes

一個有抽象方法__bytes__ 的 ABC。

classtyping.SupportsComplex

一個有抽象方法__complex__ 的 ABC。

classtyping.SupportsFloat

一個有抽象方法__float__ 的 ABC。

classtyping.SupportsIndex

一個有抽象方法__index__ 的 ABC。

在 3.8 版被加入.

classtyping.SupportsInt

一個有抽象方法__int__ 的 ABC。

classtyping.SupportsRound

An ABC with one abstract method__round__that is covariant in its return type.

ABCs for working with IO

classtyping.IO
classtyping.TextIO
classtyping.BinaryIO

Generic typeIO[AnyStr] and its subclassesTextIO(IO[str])andBinaryIO(IO[bytes])represent the types of I/O streams such as returned byopen().

函式與裝飾器

typing.cast(typ,val)

Cast a value to a type.

This returns the value unchanged. To the type checker thissignals that the return value has the designated type, but atruntime we intentionally don't check anything (we want thisto be as fast as possible).

typing.assert_type(val,typ,/)

Ask a static type checker to confirm thatval has an inferred type oftyp.

At runtime this does nothing: it returns the first argument unchanged with nochecks or side effects, no matter the actual type of the argument.

When a static type checker encounters a call toassert_type(), itemits an error if the value is not of the specified type:

defgreet(name:str)->None:assert_type(name,str)# OK, inferred type of `name` is `str`assert_type(name,int)# type checker error

This function is useful for ensuring the type checker's understanding of ascript is in line with the developer's intentions:

defcomplex_function(arg:object):# Do some complex type-narrowing logic,# after which we hope the inferred type will be `int`...# Test whether the type checker correctly understands our functionassert_type(arg,int)

在 3.11 版被加入.

typing.assert_never(arg,/)

Ask a static type checker to confirm that a line of code is unreachable.

舉例來說:

defint_or_str(arg:int|str)->None:matcharg:caseint():print("It's an int")casestr():print("It's a str")case_asunreachable:assert_never(unreachable)

Here, the annotations allow the type checker to infer that thelast case can never execute, becausearg is eitheranint or astr, and both options are covered byearlier cases.

If a type checker finds that a call toassert_never() isreachable, it will emit an error. For example, if the type annotationforarg was insteadint|str|float, the type checker wouldemit an error pointing out thatunreachable is of typefloat.For a call toassert_never to pass type checking, the inferred type ofthe argument passed in must be the bottom type,Never, and nothingelse.

At runtime, this throws an exception when called.

也參考

Unreachable Code and Exhaustiveness Checking has moreinformation about exhaustiveness checking with static typing.

在 3.11 版被加入.

typing.reveal_type(obj,/)

Ask a static type checker to reveal the inferred type of an expression.

When a static type checker encounters a call to this function,it emits a diagnostic with the inferred type of the argument. For example:

x:int=1reveal_type(x)# Revealed type is "builtins.int"

This can be useful when you want to debug how your type checkerhandles a particular piece of code.

At runtime, this function prints the runtime type of its argument tosys.stderr and returns the argument unchanged (allowing the call tobe used within an expression):

x=reveal_type(1)# 印出 "Runtime type is int"print(x)# 印出 "1"

Note that the runtime type may be different from (more or less specificthan) the type statically inferred by a type checker.

Most type checkers supportreveal_type() anywhere, even if thename is not imported fromtyping. Importing the name fromtyping, however, allows your code to run without runtime errors andcommunicates intent more clearly.

在 3.11 版被加入.

@typing.dataclass_transform(*,eq_default=True,order_default=False,kw_only_default=False,frozen_default=False,field_specifiers=(),**kwargs)

Decorator to mark an object as providingdataclass-like behavior.

dataclass_transform may be used todecorate a class, metaclass, or a function that is itself a decorator.The presence of@dataclass_transform() tells a static type checker that thedecorated object performs runtime "magic" thattransforms a class in a similar way to@dataclasses.dataclass.

Example usage with a decorator function:

@dataclass_transform()defcreate_model[T](cls:type[T])->type[T]:...returncls@create_modelclassCustomerModel:id:intname:str

On a base class:

@dataclass_transform()classModelBase:...classCustomerModel(ModelBase):id:intname:str

On a metaclass:

@dataclass_transform()classModelMeta(type):...classModelBase(metaclass=ModelMeta):...classCustomerModel(ModelBase):id:intname:str

TheCustomerModel classes defined above willbe treated by type checkers similarly to classes created with@dataclasses.dataclass.For example, type checkers will assume these classes have__init__ methods that acceptid andname.

The decorated class, metaclass, or function may accept the following boolarguments which type checkers will assume have the same effect as theywould have on the@dataclasses.dataclass decorator:init,eq,order,unsafe_hash,frozen,match_args,kw_only, andslots. It must be possible for the value of thesearguments (True orFalse) to be statically evaluated.

The arguments to thedataclass_transform decorator can be used tocustomize the default behaviors of the decorated class, metaclass, orfunction:

參數:
  • eq_default (bool) -- Indicates whether theeq parameter is assumed to beTrue orFalse if it is omitted by the caller.Defaults toTrue.

  • order_default (bool) -- Indicates whether theorder parameter isassumed to beTrue orFalse if it is omitted by the caller.Defaults toFalse.

  • kw_only_default (bool) -- Indicates whether thekw_only parameter isassumed to beTrue orFalse if it is omitted by the caller.Defaults toFalse.

  • frozen_default (bool) --

    Indicates whether thefrozen parameter isassumed to beTrue orFalse if it is omitted by the caller.Defaults toFalse.

    在 3.12 版被加入.

  • field_specifiers (tuple[Callable[...,Any],...]) -- Specifies a static list of supported classesor functions that describe fields, similar todataclasses.field().Defaults to().

  • **kwargs (Any) -- Arbitrary other keyword arguments are accepted in order to allow forpossible future extensions.

Type checkers recognize the following optional parameters on fieldspecifiers:

Recognised parameters for field specifiers

Parameter name

Description

init

Indicates whether the field should be included in thesynthesized__init__ method. If unspecified,init defaults toTrue.

default

Provides the default value for the field.

default_factory

Provides a runtime callback that returns thedefault value for the field. If neitherdefault nordefault_factory are specified, the field is assumed to have nodefault value and must be provided a value when the class isinstantiated.

factory

An alias for thedefault_factory parameter on field specifiers.

kw_only

Indicates whether the field should be marked askeyword-only. IfTrue, the field will be keyword-only. IfFalse, it will not be keyword-only. If unspecified, the value ofthekw_only parameter on the object decorated withdataclass_transform will be used, or if that is unspecified, thevalue ofkw_only_default ondataclass_transform will be used.

alias

Provides an alternative name for the field. This alternativename is used in the synthesized__init__ method.

At runtime, this decorator records its arguments in the__dataclass_transform__ attribute on the decorated object.It has no other runtime effect.

更多細節請見PEP 681

在 3.11 版被加入.

@typing.overload

Decorator for creating overloaded functions and methods.

The@overload decorator allows describing functions and methodsthat support multiple different combinations of argument types. A seriesof@overload-decorated definitions must be followed by exactly onenon-@overload-decorated definition (for the same function/method).

@overload-decorated definitions are for the benefit of thetype checker only, since they will be overwritten by thenon-@overload-decorated definition. The non-@overload-decorateddefinition, meanwhile, will be used atruntime but should be ignored by a type checker. At runtime, callingan@overload-decorated function directly will raiseNotImplementedError.

An example of overload that gives a moreprecise type than can be expressed using a union or a type variable:

@overloaddefprocess(response:None)->None:...@overloaddefprocess(response:int)->tuple[int,str]:...@overloaddefprocess(response:bytes)->str:...defprocess(response):...# 實際的實作在這邊

SeePEP 484 for more details and comparison with other typing semantics.

在 3.11 版的變更:Overloaded functions can now be introspected at runtime usingget_overloads().

typing.get_overloads(func)

Return a sequence of@overload-decorated definitions forfunc.

func is the function object for the implementation of theoverloaded function. For example, given the definition ofprocess inthe documentation for@overload,get_overloads(process) will return a sequence of three function objectsfor the three defined overloads. If called on a function with no overloads,get_overloads() returns an empty sequence.

get_overloads() can be used for introspecting an overloaded function atruntime.

在 3.11 版被加入.

typing.clear_overloads()

Clear all registered overloads in the internal registry.

This can be used to reclaim the memory used by the registry.

在 3.11 版被加入.

@typing.final

Decorator to indicate final methods and final classes.

Decorating a method with@final indicates to a type checker that themethod cannot be overridden in a subclass. Decorating a class with@finalindicates that it cannot be subclassed.

舉例來說:

classBase:@finaldefdone(self)->None:...classSub(Base):defdone(self)->None:# 型別檢查器回報的錯誤...@finalclassLeaf:...classOther(Leaf):# 型別檢查器回報的錯誤...

這些屬性 (property) 不會在 runtime 時進行檢查。更多詳細資訊請看PEP 591

在 3.8 版被加入.

在 3.11 版的變更:The decorator will now attempt to set a__final__ attribute toTrueon the decorated object. Thus, a check likeifgetattr(obj,"__final__",False) can be used at runtimeto determine whether an objectobj has been marked as final.If the decorated object does not support setting attributes,the decorator returns the object unchanged without raising an exception.

@typing.no_type_check

Decorator to indicate that annotations are not type hints.

This works as a class or functiondecorator. With a class, itapplies recursively to all methods and classes defined in that class(but not to methods defined in its superclasses or subclasses). Typecheckers will ignore all annotations in a function or class with thisdecorator.

@no_type_check mutates the decorated object in place.

@typing.no_type_check_decorator

Decorator to give another decorator theno_type_check() effect.

This wraps the decorator with something that wraps the decoratedfunction inno_type_check().

Deprecated since version 3.13, will be removed in version 3.15:No type checker ever added support for@no_type_check_decorator. Itis therefore deprecated, and will be removed in Python 3.15.

@typing.override

Decorator to indicate that a method in a subclass is intended to override amethod or attribute in a superclass.

Type checkers should emit an error if a method decorated with@overridedoes not, in fact, override anything.This helps prevent bugs that may occur when a base class is changed withoutan equivalent change to a child class.

舉例來說:

classBase:deflog_status(self)->None:...classSub(Base):@overridedeflog_status(self)->None:# Okay: overrides Base.log_status...@overridedefdone(self)->None:# Error reported by type checker...

There is no runtime checking of this property.

The decorator will attempt to set an__override__ attribute toTrue onthe decorated object. Thus, a check likeifgetattr(obj,"__override__",False) can be used at runtime to determinewhether an objectobj has been marked as an override. If the decorated objectdoes not support setting attributes, the decorator returns the object unchangedwithout raising an exception.

更多細節請見PEP 698

在 3.12 版被加入.

@typing.type_check_only

Decorator to mark a class or function as unavailable at runtime.

This decorator is itself not available at runtime. It is mainlyintended to mark classes that are defined in type stub files ifan implementation returns an instance of a private class:

@type_check_onlyclassResponse:# private or not available at runtimecode:intdefget_header(self,name:str)->str:...deffetch_response()->Response:...

Note that returning instances of private classes is not recommended.It is usually preferable to make such classes public.

Introspection helpers

typing.get_type_hints(obj,globalns=None,localns=None,include_extras=False)

Return a dictionary containing type hints for a function, method, moduleor class object.

This is often the same asobj.__annotations__, but this function makesthe following changes to the annotations dictionary:

  • Forward references encoded as string literals orForwardRefobjects are handled by evaluating them inglobalns,localns, and(where applicable)obj'stype parameter namespace.Ifglobalns orlocalns is not given, appropriate namespacedictionaries are inferred fromobj.

  • None is replaced withtypes.NoneType.

  • If@no_type_check has been applied toobj, anempty dictionary is returned.

  • Ifobj is a classC, the function returns a dictionary that mergesannotations fromC's base classes with those onC directly. Thisis done by traversingC.__mro__ and iterativelycombining__annotations__ dictionaries. Annotations on classes appearingearlier in themethod resolution order always take precedence overannotations on classes appearing later in the method resolution order.

  • The function recursively replaces all occurrences ofAnnotated[T,...]withT, unlessinclude_extras is set toTrue (seeAnnotated for more information).

See alsoinspect.get_annotations(), a lower-level function thatreturns annotations more directly.

備註

If any forward references in the annotations ofobj are not resolvableor are not valid Python code, this function will raise an exceptionsuch asNameError. For example, this can happen with importedtype aliases that include forward references,or with names imported underifTYPE_CHECKING.

在 3.9 版的變更:新增include_extras 參數(如PEP 593 中所述)。更多資訊請見Annotated 的文件。

在 3.11 版的變更:Previously,Optional[t] was added for function and method annotationsif a default value equal toNone was set.Now the annotation is returned unchanged.

typing.get_origin(tp)

Get the unsubscripted version of a type: for a typing object of the formX[Y,Z,...] returnX.

IfX is a typing-module alias for a builtin orcollections class, it will be normalized to the original class.IfX is an instance ofParamSpecArgs orParamSpecKwargs,return the underlyingParamSpec.ReturnNone for unsupported objects.

舉例:

assertget_origin(str)isNoneassertget_origin(Dict[str,int])isdictassertget_origin(Union[int,str])isUnionassertget_origin(Annotated[str,"metadata"])isAnnotatedP=ParamSpec('P')assertget_origin(P.args)isPassertget_origin(P.kwargs)isP

在 3.8 版被加入.

typing.get_args(tp)

Get type arguments with all substitutions performed: for a typing objectof the formX[Y,Z,...] return(Y,Z,...).

IfX is a union orLiteral contained in anothergeneric type, the order of(Y,Z,...) may be different from the orderof the original arguments[Y,Z,...] due to type caching.Return() for unsupported objects.

舉例:

assertget_args(int)==()assertget_args(Dict[int,str])==(int,str)assertget_args(Union[int,str])==(int,str)

在 3.8 版被加入.

typing.get_protocol_members(tp)

Return the set of members defined in aProtocol.

>>>fromtypingimportProtocol,get_protocol_members>>>classP(Protocol):...defa(self)->str:......b:int>>>get_protocol_members(P)==frozenset({'a','b'})True

RaiseTypeError for arguments that are not Protocols.

在 3.13 版被加入.

typing.is_protocol(tp)

確定一個型別是否Protocol

舉例來說:

classP(Protocol):defa(self)->str:...b:intis_protocol(P)# => Trueis_protocol(int)# => False

在 3.13 版被加入.

typing.is_typeddict(tp)

Check if a type is aTypedDict.

舉例來說:

classFilm(TypedDict):title:stryear:intassertis_typeddict(Film)assertnotis_typeddict(list|str)# TypedDict is a factory for creating typed dicts,# not a typed dict itselfassertnotis_typeddict(TypedDict)

在 3.10 版被加入.

classtyping.ForwardRef

Class used for internal typing representation of string forward references.

For example,List["SomeClass"] is implicitly transformed intoList[ForwardRef("SomeClass")].ForwardRef should not be instantiated bya user, but may be used by introspection tools.

備註

PEP 585 generic types such aslist["SomeClass"] will not beimplicitly transformed intolist[ForwardRef("SomeClass")] and thuswill not automatically resolve tolist[SomeClass].

在 3.7.4 版被加入.

typing.NoDefault

A sentinel object used to indicate that a type parameter has no defaultvalue. For example:

>>>T=TypeVar("T")>>>T.__default__istyping.NoDefaultTrue>>>S=TypeVar("S",default=None)>>>S.__default__isNoneTrue

在 3.13 版被加入.

常數

typing.TYPE_CHECKING

A special constant that is assumed to beTrue by 3rd party statictype checkers. It isFalse at runtime.

用法:

ifTYPE_CHECKING:importexpensive_moddeffun(arg:'expensive_mod.SomeType')->None:local_var:expensive_mod.AnotherType=other_fun()

The first type annotation must be enclosed in quotes, making it a"forward reference", to hide theexpensive_mod reference from theinterpreter runtime. Type annotations for local variables are notevaluated, so the second annotation does not need to be enclosed in quotes.

備註

Iffrom__future__importannotations is used,annotations are not evaluated at function definition time.Instead, they are stored as strings in__annotations__.This makes it unnecessary to use quotes around the annotation(seePEP 563).

在 3.5.2 版被加入.

棄用的別名

This module defines several deprecated aliases to pre-existingstandard library classes. These were originally included in thetypingmodule in order to support parameterizing these generic classes using[].However, the aliases became redundant in Python 3.9 when thecorresponding pre-existing classes were enhanced to support[] (seePEP 585).

The redundant types are deprecated as of Python 3.9. However, while the aliasesmay be removed at some point, removal of these aliases is not currentlyplanned. As such, no deprecation warnings are currently issued by theinterpreter for these aliases.

If at some point it is decided to remove these deprecated aliases, adeprecation warning will be issued by the interpreter for at least two releasesprior to removal. The aliases are guaranteed to remain in thetyping modulewithout deprecation warnings until at least Python 3.14.

Type checkers are encouraged to flag uses of the deprecated types if theprogram they are checking targets a minimum Python version of 3.9 or newer.

內建型別的別名

classtyping.Dict(dict,MutableMapping[KT,VT])

棄用dict 的別名。

Note that to annotate arguments, it is preferredto use an abstract collection type such asMappingrather than to usedict ortyping.Dict.

在 3.9 版之後被棄用:builtins.dict now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.List(list,MutableSequence[T])

棄用list 的別名。

Note that to annotate arguments, it is preferredto use an abstract collection type such asSequence orIterablerather than to uselist ortyping.List.

在 3.9 版之後被棄用:builtins.list now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Set(set,MutableSet[T])

棄用builtins.set 的別名。

Note that to annotate arguments, it is preferredto use an abstract collection type such ascollections.abc.Setrather than to useset ortyping.Set.

在 3.9 版之後被棄用:builtins.set now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.FrozenSet(frozenset,AbstractSet[T_co])

棄用builtins.frozenset 的別名。

在 3.9 版之後被棄用:builtins.frozensetnow supports subscripting ([]).SeePEP 585 and泛型別名型別.

typing.Tuple

棄用tuple 的別名。

tuple andTuple are special-cased in the type system; see註釋元組 (tuple) for more details.

在 3.9 版之後被棄用:builtins.tuple now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Type(Generic[CT_co])

棄用type 的別名。

See類別物件的型別 for details on usingtype ortyping.Type in type annotations.

在 3.5.2 版被加入.

在 3.9 版之後被棄用:builtins.type now supports subscripting ([]).SeePEP 585 and泛型別名型別.

collections 中型別的別名

classtyping.DefaultDict(collections.defaultdict,MutableMapping[KT,VT])

棄用collections.defaultdict 的別名。

在 3.5.2 版被加入.

在 3.9 版之後被棄用:collections.defaultdict now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.OrderedDict(collections.OrderedDict,MutableMapping[KT,VT])

棄用collections.OrderedDict 的別名。

在 3.7.2 版被加入.

在 3.9 版之後被棄用:collections.OrderedDict now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.ChainMap(collections.ChainMap,MutableMapping[KT,VT])

棄用collections.ChainMap 的別名。

在 3.6.1 版被加入.

在 3.9 版之後被棄用:collections.ChainMap now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Counter(collections.Counter,Dict[T,int])

棄用collections.Counter 的別名。

在 3.6.1 版被加入.

在 3.9 版之後被棄用:collections.Counter now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Deque(deque,MutableSequence[T])

棄用collections.deque 的別名。

在 3.6.1 版被加入.

在 3.9 版之後被棄用:collections.deque now supports subscripting ([]).SeePEP 585 and泛型別名型別.

Aliases to other concrete types

classtyping.Pattern
classtyping.Match

Deprecated aliases corresponding to the return types fromre.compile() andre.match().

These types (and the corresponding functions) are generic overAnyStr.Pattern can be specialised asPattern[str] orPattern[bytes];Match can be specialised asMatch[str] orMatch[bytes].

在 3.9 版之後被棄用:ClassesPattern andMatch fromre now support[].SeePEP 585 and泛型別名型別.

classtyping.Text

棄用str 的別名。

Text is provided to supply a forwardcompatible path for Python 2 code: in Python 2,Text is an alias forunicode.

UseText to indicate that a value must contain a unicode string ina manner that is compatible with both Python 2 and Python 3:

defadd_unicode_checkmark(text:Text)->Text:returntext+u'\u2713'

在 3.5.2 版被加入.

在 3.11 版之後被棄用:Python 2 is no longer supported, and most type checkers also no longersupport type checking Python 2 code. Removal of the alias is notcurrently planned, but users are encouraged to usestr instead ofText.

collections.abc 中容器 ABC 的別名

classtyping.AbstractSet(Collection[T_co])

棄用collections.abc.Set 的別名。

在 3.9 版之後被棄用:collections.abc.Set now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.ByteString(Sequence[int])

This type represents the typesbytes,bytearray,andmemoryview of byte sequences.

Deprecated since version 3.9, will be removed in version 3.14:Prefercollections.abc.Buffer, or a union likebytes|bytearray|memoryview.

classtyping.Collection(Sized,Iterable[T_co],Container[T_co])

棄用collections.abc.Collection 的別名。

在 3.6 版被加入.

在 3.9 版之後被棄用:collections.abc.Collection now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Container(Generic[T_co])

棄用collections.abc.Container 的別名。

在 3.9 版之後被棄用:collections.abc.Container now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.ItemsView(MappingView,AbstractSet[tuple[KT_co,VT_co]])

棄用collections.abc.ItemsView 的別名。

在 3.9 版之後被棄用:collections.abc.ItemsView now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.KeysView(MappingView,AbstractSet[KT_co])

棄用collections.abc.KeysView 的別名。

在 3.9 版之後被棄用:collections.abc.KeysView now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Mapping(Collection[KT],Generic[KT,VT_co])

棄用collections.abc.Mapping 的別名。

在 3.9 版之後被棄用:collections.abc.Mapping now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.MappingView(Sized)

棄用collections.abc.MappingView 的別名。

在 3.9 版之後被棄用:collections.abc.MappingView now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.MutableMapping(Mapping[KT,VT])

棄用collections.abc.MutableMapping 的別名。

在 3.9 版之後被棄用:collections.abc.MutableMappingnow supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.MutableSequence(Sequence[T])

棄用collections.abc.MutableSequence 的別名。

在 3.9 版之後被棄用:collections.abc.MutableSequencenow supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.MutableSet(AbstractSet[T])

棄用collections.abc.MutableSet 的別名。

在 3.9 版之後被棄用:collections.abc.MutableSet now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Sequence(Reversible[T_co],Collection[T_co])

棄用collections.abc.Sequence 的別名。

在 3.9 版之後被棄用:collections.abc.Sequence now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.ValuesView(MappingView,Collection[_VT_co])

棄用collections.abc.ValuesView 的別名。

在 3.9 版之後被棄用:collections.abc.ValuesView now supports subscripting ([]).SeePEP 585 and泛型別名型別.

collections.abc 中非同步 ABC 的別名

classtyping.Coroutine(Awaitable[ReturnType],Generic[YieldType,SendType,ReturnType])

棄用collections.abc.Coroutine 的別名。

SeeAnnotating generators and coroutinesfor details on usingcollections.abc.Coroutineandtyping.Coroutine in type annotations.

在 3.5.3 版被加入.

在 3.9 版之後被棄用:collections.abc.Coroutine now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.AsyncGenerator(AsyncIterator[YieldType],Generic[YieldType,SendType])

棄用collections.abc.AsyncGenerator 的別名。

SeeAnnotating generators and coroutinesfor details on usingcollections.abc.AsyncGeneratorandtyping.AsyncGenerator in type annotations.

在 3.6.1 版被加入.

在 3.9 版之後被棄用:collections.abc.AsyncGeneratornow supports subscripting ([]).SeePEP 585 and泛型別名型別.

在 3.13 版的變更:SendType 參數現在有預設值。

classtyping.AsyncIterable(Generic[T_co])

棄用collections.abc.AsyncIterable 的別名。

在 3.5.2 版被加入.

在 3.9 版之後被棄用:collections.abc.AsyncIterable now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.AsyncIterator(AsyncIterable[T_co])

棄用collections.abc.AsyncIterator 的別名。

在 3.5.2 版被加入.

在 3.9 版之後被棄用:collections.abc.AsyncIterator now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Awaitable(Generic[T_co])

棄用collections.abc.Awaitable 的別名。

在 3.5.2 版被加入.

在 3.9 版之後被棄用:collections.abc.Awaitable now supports subscripting ([]).SeePEP 585 and泛型別名型別.

Aliases to other ABCs incollections.abc

classtyping.Iterable(Generic[T_co])

棄用collections.abc.Iterable 的別名。

在 3.9 版之後被棄用:collections.abc.Iterable now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Iterator(Iterable[T_co])

棄用collections.abc.Iterator 的別名。

在 3.9 版之後被棄用:collections.abc.Iterator now supports subscripting ([]).SeePEP 585 and泛型別名型別.

typing.Callable

棄用collections.abc.Callable 的別名。

See註釋 callable 物件 for details on how to usecollections.abc.Callable andtyping.Callable in type annotations.

在 3.9 版之後被棄用:collections.abc.Callable now supports subscripting ([]).SeePEP 585 and泛型別名型別.

在 3.10 版的變更:Callable 現已支援ParamSpec 以及Concatenate。請參閱PEP 612 閱讀詳細內容。

classtyping.Generator(Iterator[YieldType],Generic[YieldType,SendType,ReturnType])

棄用collections.abc.Generator 的別名。

SeeAnnotating generators and coroutinesfor details on usingcollections.abc.Generatorandtyping.Generator in type annotations.

在 3.9 版之後被棄用:collections.abc.Generator now supports subscripting ([]).SeePEP 585 and泛型別名型別.

在 3.13 版的變更:Default values for the send and return types were added.

classtyping.Hashable

棄用collections.abc.Hashable 的別名。

在 3.12 版之後被棄用:改為直接使用collections.abc.Hashable

classtyping.Reversible(Iterable[T_co])

棄用collections.abc.Reversible 的別名。

在 3.9 版之後被棄用:collections.abc.Reversible now supports subscripting ([]).SeePEP 585 and泛型別名型別.

classtyping.Sized

棄用collections.abc.Sized 的別名。

在 3.12 版之後被棄用:改為直接使用collections.abc.Sized

contextlib ABC 的別名

classtyping.ContextManager(Generic[T_co,ExitT_co])

Deprecated alias tocontextlib.AbstractContextManager.

The first type parameter,T_co, represents the type returned bythe__enter__() method. The optional second type parameter,ExitT_co,which defaults tobool|None, represents the type returned by the__exit__() method.

在 3.5.4 版被加入.

在 3.9 版之後被棄用:contextlib.AbstractContextManagernow supports subscripting ([]).SeePEP 585 and泛型別名型別.

在 3.13 版的變更:Added the optional second type parameter,ExitT_co.

classtyping.AsyncContextManager(Generic[T_co,AExitT_co])

Deprecated alias tocontextlib.AbstractAsyncContextManager.

The first type parameter,T_co, represents the type returned bythe__aenter__() method. The optional second type parameter,AExitT_co,which defaults tobool|None, represents the type returned by the__aexit__() method.

在 3.6.2 版被加入.

在 3.9 版之後被棄用:contextlib.AbstractAsyncContextManagernow supports subscripting ([]).SeePEP 585 and泛型別名型別.

在 3.13 版的變更:Added the optional second type parameter,AExitT_co.

主要功能的棄用時程表

Certain features intyping are deprecated and may be removed in a futureversion of Python. The following table summarizes major deprecations for yourconvenience. This is subject to change, and not all deprecations are listed.

Feature

棄用於

Projected removal

PEP/issue

typing versions of standard collections

3.9

Undecided (see棄用的別名 for more information)

PEP 585

typing.ByteString

3.9

3.14

gh-91896

typing.Text

3.11

Undecided

gh-92332

typing.Hashabletyping.Sized

3.12

Undecided

gh-94309

typing.TypeAlias

3.12

Undecided

PEP 695

@typing.no_type_check_decorator

3.13

3.15

gh-106309

typing.AnyStr

3.13

3.18

gh-105578