numbers
— Numeric abstract base classes¶
Source code:Lib/numbers.py
Thenumbers
module (PEP 3141) defines a hierarchy of numericabstract base classes which progressively definemore operations. None of the types defined in this module are intended to be instantiated.
- classnumbers.Number¶
The root of the numeric hierarchy. If you just want to check if an argumentx is a number, without caring what kind, use
isinstance(x,Number)
.
The numeric tower¶
- classnumbers.Complex¶
Subclasses of this type describe complex numbers and include the operationsthat work on the built-in
complex
type. These are: conversions tocomplex
andbool
,real
,imag
,+
,-
,*
,/
,**
,abs()
,conjugate()
,==
, and!=
. All except-
and!=
are abstract.- real¶
Abstract. Retrieves the real component of this number.
- imag¶
Abstract. Retrieves the imaginary component of this number.
- abstractmethodconjugate()¶
Abstract. Returns the complex conjugate. For example,
(1+3j).conjugate()==(1-3j)
.
- classnumbers.Real¶
To
Complex
,Real
adds the operations that work on realnumbers.In short, those are: a conversion to
float
,math.trunc()
,round()
,math.floor()
,math.ceil()
,divmod()
,//
,%
,<
,<=
,>
, and>=
.Real also provides defaults for
complex()
,real
,imag
, andconjugate()
.
- classnumbers.Rational¶
Subtypes
Real
and addsnumerator
anddenominator
properties. It also provides a default forfloat()
.The
numerator
anddenominator
valuesshould be instances ofIntegral
and should be in lowest terms withdenominator
positive.- numerator¶
Abstract.
- denominator¶
Abstract.
Notes for type implementers¶
Implementers should be careful to make equal numbers equal and hashthem to the same values. This may be subtle if there are two differentextensions of the real numbers. For example,fractions.Fraction
implementshash()
as follows:
def__hash__(self):ifself.denominator==1:# Get integers right.returnhash(self.numerator)# Expensive check, but definitely correct.ifself==float(self):returnhash(float(self))else:# Use tuple's hash to avoid a high collision rate on# simple fractions.returnhash((self.numerator,self.denominator))
Adding More Numeric ABCs¶
There are, of course, more possible ABCs for numbers, and this wouldbe a poor hierarchy if it precluded the possibility of addingthose. You can addMyFoo
betweenComplex
andReal
with:
classMyFoo(Complex):...MyFoo.register(Real)
Implementing the arithmetic operations¶
We want to implement the arithmetic operations so that mixed-modeoperations either call an implementation whose author knew about thetypes of both arguments, or convert both to the nearest built in typeand do the operation there. For subtypes ofIntegral
, thismeans that__add__()
and__radd__()
should bedefined as:
classMyIntegral(Integral):def__add__(self,other):ifisinstance(other,MyIntegral):returndo_my_adding_stuff(self,other)elifisinstance(other,OtherTypeIKnowAbout):returndo_my_other_adding_stuff(self,other)else:returnNotImplementeddef__radd__(self,other):ifisinstance(other,MyIntegral):returndo_my_adding_stuff(other,self)elifisinstance(other,OtherTypeIKnowAbout):returndo_my_other_adding_stuff(other,self)elifisinstance(other,Integral):returnint(other)+int(self)elifisinstance(other,Real):returnfloat(other)+float(self)elifisinstance(other,Complex):returncomplex(other)+complex(self)else:returnNotImplemented
There are 5 different cases for a mixed-type operation on subclassesofComplex
. I’ll refer to all of the above code that doesn’trefer toMyIntegral
andOtherTypeIKnowAbout
as«boilerplate».a
will be an instance ofA
, which is a subtypeofComplex
(a:A<:Complex
), andb:B<:Complex
. I’ll considera+b
:
If
A
defines an__add__()
which acceptsb
, all iswell.If
A
falls back to the boilerplate code, and it were toreturn a value from__add__()
, we’d miss the possibilitythatB
defines a more intelligent__radd__()
, so theboilerplate should returnNotImplemented
from__add__()
. (OrA
may not implement__add__()
atall.)Then
B
’s__radd__()
gets a chance. If it acceptsa
, all is well.If it falls back to the boilerplate, there are no more possiblemethods to try, so this is where the default implementationshould live.
If
B<:A
, Python triesB.__radd__
beforeA.__add__
. This is ok, because it was implemented withknowledge ofA
, so it can handle those instances beforedelegating toComplex
.
IfA<:Complex
andB<:Real
without sharing any other knowledge,then the appropriate shared operation is the one involving the builtincomplex
, and both__radd__()
s land there, soa+b==b+a
.
Because most of the operations on any given type will be very similar,it can be useful to define a helper function which generates theforward and reverse instances of any given operator. For example,fractions.Fraction
uses:
def_operator_fallbacks(monomorphic_operator,fallback_operator):defforward(a,b):ifisinstance(b,(int,Fraction)):returnmonomorphic_operator(a,b)elifisinstance(b,float):returnfallback_operator(float(a),b)elifisinstance(b,complex):returnfallback_operator(complex(a),b)else:returnNotImplementedforward.__name__='__'+fallback_operator.__name__+'__'forward.__doc__=monomorphic_operator.__doc__defreverse(b,a):ifisinstance(a,Rational):# Includes ints.returnmonomorphic_operator(a,b)elifisinstance(a,Real):returnfallback_operator(float(a),float(b))elifisinstance(a,Complex):returnfallback_operator(complex(a),complex(b))else:returnNotImplementedreverse.__name__='__r'+fallback_operator.__name__+'__'reverse.__doc__=monomorphic_operator.__doc__returnforward,reversedef_add(a,b):"""a + b"""returnFraction(a.numerator*b.denominator+b.numerator*a.denominator,a.denominator*b.denominator)__add__,__radd__=_operator_fallbacks(_add,operator.add)# ...