Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
PyPI

numpy 2.2.4

pip install numpy

Latest version

Released:

Fundamental package for array computing in Python

Verified details

These details have beenverified by PyPI
Maintainers
Avatar for charlesr.harris from gravatar.com charlesr.harrisAvatar for matthew.brett from gravatar.com matthew.brettAvatar for mattip from gravatar.com mattipAvatar for rgommers from gravatar.com rgommersAvatar for teoliphant from gravatar.com teoliphant

Unverified details

These details havenot been verified by PyPI
Project links
Meta
  • License: BSD License (Copyright (c) 2005-2024, NumPy Developers.)
  • Author: Travis E. Oliphant et al.
  • Maintainer:NumPy Developers
  • Requires: Python >=3.10

Project description


Powered by NumFOCUSPyPI DownloadsConda DownloadsStack OverflowNature PaperOpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requirespytest andhypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group ofcontributors. The NumPy leadership has made a strongcommitment to creating an open, inclusive, and positive community. Please read theNumPy Code of Conduct for guidance on how to interactwith others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributionsto the source code, please contact us through themailinglist first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improveour website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visitour website.If you’re unsure where to start or how your skills fit in, reach out! You canask on the mailing list or here, on GitHub, by opening a new issue or leaving acomment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like tospeak to us in private first, contact our community coordinators atnumpy-team@googlegroups.com or on Slack (writenumpy-team@googlegroups.com foran invitation).

We also have a biweekly community call, details of which are announced on themailing list. You are very welcome to join.

If you are new to contributing to open source,thisguide helps explain why, what,and how to successfully get involved.

Project details

Verified details

These details have beenverified by PyPI
Maintainers
Avatar for charlesr.harris from gravatar.com charlesr.harrisAvatar for matthew.brett from gravatar.com matthew.brettAvatar for mattip from gravatar.com mattipAvatar for rgommers from gravatar.com rgommersAvatar for teoliphant from gravatar.com teoliphant

Unverified details

These details havenot been verified by PyPI
Project links
Meta
  • License: BSD License (Copyright (c) 2005-2024, NumPy Developers.)
  • Author: Travis E. Oliphant et al.
  • Maintainer:NumPy Developers
  • Requires: Python >=3.10

Release historyRelease notifications |RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more aboutinstalling packages.

Source Distribution

numpy-2.2.4.tar.gz (20.3 MBview details)

UploadedSource

Built Distributions

numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl (12.9 MBview details)

UploadedPyPyWindows x86-64

numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MBview details)

UploadedPyPymanylinux: glibc 2.17+ x86-64

numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (6.8 MBview details)

UploadedPyPymacOS 14.0+ x86-64

numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (21.1 MBview details)

UploadedPyPymacOS 10.15+ x86-64

numpy-2.2.4-cp313-cp313t-win_amd64.whl (12.7 MBview details)

UploadedCPython 3.13tWindows x86-64

numpy-2.2.4-cp313-cp313t-win32.whl (6.4 MBview details)

UploadedCPython 3.13tWindows x86

numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl (17.9 MBview details)

UploadedCPython 3.13tmusllinux: musl 1.2+ x86-64

numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl (15.6 MBview details)

UploadedCPython 3.13tmusllinux: musl 1.2+ ARM64

numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MBview details)

UploadedCPython 3.13tmanylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MBview details)

UploadedCPython 3.13tmanylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MBview details)

UploadedCPython 3.13tmacOS 14.0+ x86-64

numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MBview details)

UploadedCPython 3.13tmacOS 14.0+ ARM64

numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl (14.2 MBview details)

UploadedCPython 3.13tmacOS 11.0+ ARM64

numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MBview details)

UploadedCPython 3.13tmacOS 10.13+ x86-64

numpy-2.2.4-cp313-cp313-win_amd64.whl (12.6 MBview details)

UploadedCPython 3.13Windows x86-64

numpy-2.2.4-cp313-cp313-win32.whl (6.3 MBview details)

UploadedCPython 3.13Windows x86

numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl (17.9 MBview details)

UploadedCPython 3.13musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl (15.6 MBview details)

UploadedCPython 3.13musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MBview details)

UploadedCPython 3.13manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MBview details)

UploadedCPython 3.13manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl (6.7 MBview details)

UploadedCPython 3.13macOS 14.0+ x86-64

numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl (5.1 MBview details)

UploadedCPython 3.13macOS 14.0+ ARM64

numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl (14.1 MBview details)

UploadedCPython 3.13macOS 11.0+ ARM64

numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MBview details)

UploadedCPython 3.13macOS 10.13+ x86-64

numpy-2.2.4-cp312-cp312-win_amd64.whl (12.6 MBview details)

UploadedCPython 3.12Windows x86-64

numpy-2.2.4-cp312-cp312-win32.whl (6.3 MBview details)

UploadedCPython 3.12Windows x86

numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl (17.9 MBview details)

UploadedCPython 3.12musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl (15.6 MBview details)

UploadedCPython 3.12musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MBview details)

UploadedCPython 3.12manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.1 MBview details)

UploadedCPython 3.12manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl (6.7 MBview details)

UploadedCPython 3.12macOS 14.0+ x86-64

numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl (5.2 MBview details)

UploadedCPython 3.12macOS 14.0+ ARM64

numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl (14.1 MBview details)

UploadedCPython 3.12macOS 11.0+ ARM64

numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MBview details)

UploadedCPython 3.12macOS 10.13+ x86-64

numpy-2.2.4-cp311-cp311-win_amd64.whl (12.9 MBview details)

UploadedCPython 3.11Windows x86-64

numpy-2.2.4-cp311-cp311-win32.whl (6.6 MBview details)

UploadedCPython 3.11Windows x86

numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl (18.2 MBview details)

UploadedCPython 3.11musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl (15.9 MBview details)

UploadedCPython 3.11musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MBview details)

UploadedCPython 3.11manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MBview details)

UploadedCPython 3.11manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl (7.0 MBview details)

UploadedCPython 3.11macOS 14.0+ x86-64

numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl (5.4 MBview details)

UploadedCPython 3.11macOS 14.0+ ARM64

numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl (14.4 MBview details)

UploadedCPython 3.11macOS 11.0+ ARM64

numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl (21.3 MBview details)

UploadedCPython 3.11macOS 10.9+ x86-64

numpy-2.2.4-cp310-cp310-win_amd64.whl (12.9 MBview details)

UploadedCPython 3.10Windows x86-64

numpy-2.2.4-cp310-cp310-win32.whl (6.6 MBview details)

UploadedCPython 3.10Windows x86

numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl (18.2 MBview details)

UploadedCPython 3.10musllinux: musl 1.2+ x86-64

numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl (15.9 MBview details)

UploadedCPython 3.10musllinux: musl 1.2+ ARM64

numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MBview details)

UploadedCPython 3.10manylinux: glibc 2.17+ x86-64

numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.4 MBview details)

UploadedCPython 3.10manylinux: glibc 2.17+ ARM64

numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl (7.0 MBview details)

UploadedCPython 3.10macOS 14.0+ x86-64

numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl (5.4 MBview details)

UploadedCPython 3.10macOS 14.0+ ARM64

numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl (14.4 MBview details)

UploadedCPython 3.10macOS 11.0+ ARM64

numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl (21.3 MBview details)

UploadedCPython 3.10macOS 10.9+ x86-64

File details

Details for the filenumpy-2.2.4.tar.gz.

File metadata

  • Download URL: numpy-2.2.4.tar.gz
  • Upload date:
  • Size: 20.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4.tar.gz
AlgorithmHash digest
SHA2569ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f
MD556232f4a69b03dd7a87a55fffc5f2ebc
BLAKE2b-256e17831103410a57bc2c2b93a3597340a8119588571f6a4539067546cb9a0bfac

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
AlgorithmHash digest
SHA256b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d
MD57330087a6ad1527ae20a495e2fb3b357
BLAKE2b-2563b3a2f6d8c1f8e45d496bca6baaec93208035faeb40d5735c25afac092ec9a12

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
AlgorithmHash digest
SHA256d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d
MD5a884ed5263b91fa87b5e3d14caf955a5
BLAKE2b-25654f5ab0d2f48b490535c7a80e05da4a98902b632369efc04f0e47bb31ca97d8f

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
AlgorithmHash digest
SHA256ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c
MD5e4e73511eac8f1a10c6abbd6fa2fa0aa
BLAKE2b-256ba3074c48b3b6494c4b820b7fa1781d441e94d87a08daa5b35d222f06ba41a6f

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
AlgorithmHash digest
SHA2567051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8
MD565e284546c5ee575eca0a3726c0a1d98
BLAKE2b-256b25cf09c33a511aff41a098e6ef3498465d95f6360621034a3d95f47edbc9119

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-win_amd64.whl
AlgorithmHash digest
SHA256188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d
MD5893fd2fdd42f386e300bee885bbb7778
BLAKE2b-2563e05eb7eec66b95cf697f08c754ef26c3549d03ebd682819f794cb039574a0a6

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-win32.whl
AlgorithmHash digest
SHA25605c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286
MD5811d25a008c68086c9382487e9a4127a
BLAKE2b-256e52b878576190c5cfa29ed896b518cc516aecc7c98a919e20706c12480465f43

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
AlgorithmHash digest
SHA256ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff
MD5554dbfa52988d01f715cbe8d4da4b409
BLAKE2b-256cbdc4fc7c0283abe0981e3b89f9b332a134e237dd476b0c018e1e21083310c31

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
AlgorithmHash digest
SHA25692bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc
MD5369eebec47c9c27cb4841a13e9522167
BLAKE2b-256fa0374c5b631ee1ded596945c12027649e6344614144369fd3ec1aaced782882

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
AlgorithmHash digest
SHA256e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8
MD5ba825efd05cca6d56c3dca9f7f1f88e7
BLAKE2b-25600065306b8199bffac2a29d9119c11f457f6c7d41115a335b78d3f86fad4dbe8

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
AlgorithmHash digest
SHA256f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960
MD5e6eccf936d25c9eda9df1a4d50ae2fdc
BLAKE2b-256417896dddb75bb9be730b87c72f30ffdd62611aba234e4e460576a068c98eff6

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
AlgorithmHash digest
SHA256879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0
MD51cc2731a246079bcab361179f38e7ccb
BLAKE2b-256a5fdd4a29478d622fedff5c4b4b4cedfc37a00691079623c0575978d2446db9e

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
AlgorithmHash digest
SHA256ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd
MD5e299021397c3cdb941b7ffe77cf0fefe
BLAKE2b-256036807b4cd01090ca46c7a336958b413cdbe75002286295f2addea767b7f16c9

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
AlgorithmHash digest
SHA256a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39
MD57504018213a3a8fea7173e2c1d0fcfd1
BLAKE2b-2563a75bb4573f6c462afd1ea5cbedcc362fe3e9bdbcc57aefd37c681be1155fbaa

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
AlgorithmHash digest
SHA2568120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8
MD53e2f31e01b45cd16a87b794477de3714
BLAKE2b-256fae2793288ede17a0fdc921172916efb40f3cbc2aa97e76c5c84aba6dc7e8747

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313-win_amd64.whl
AlgorithmHash digest
SHA256207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3
MD566801fe84a436b7ed3be6e0082b86917
BLAKE2b-2565217d0dd10ab6d125c6d11ffb6dfa3423c3571befab8358d4f85cd4471964fcd

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp313-cp313-win32.whl
AlgorithmHash digest
SHA256f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c
MD504bf8d0f6a9e279ab01df4ed0b4aeee1
BLAKE2b-256b9eb38c06217a5f6de27dcb41524ca95a44e395e6a1decdc0c99fec0832ce6ae

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
AlgorithmHash digest
SHA25681413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd
MD5329288501f012606605bdbed368e58e9
BLAKE2b-256a57897c775bc4f05abc8a8426436b7cb1be806a02a2994b195945600855e3a25

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
AlgorithmHash digest
SHA25631504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6
MD5e8597c611a919a8e88229d6889c1f86e
BLAKE2b-256febc2218160574d862d5e55f803d88ddcad88beff94791f9c5f86d67bd8fbf1c

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
AlgorithmHash digest
SHA256bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7
MD59970699bd95e8a64a562b1e6328b83d0
BLAKE2b-2564b04e208ff3ae3ddfbafc05910f89546382f15a3f10186b1f56bd99f159689c2

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
AlgorithmHash digest
SHA2566f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298
MD59293b0575a902b2d55c35567dee7679e
BLAKE2b-256137341b7b27f169ecf368b52533edb72e56a133f9e86256e809e169362553b49

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
AlgorithmHash digest
SHA2563387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc
MD57fd16554fa0a15b7f99b1fabf1c4592c
BLAKE2b-2561c8be2fc8a75fcb7be12d90b31477c9356c0cbb44abce7ffb36be39a0017afad

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
AlgorithmHash digest
SHA25679bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392
MD592c9a30386a64f2deddad1db742bd296
BLAKE2b-2566a7067b24d68a56551d43a6ec9fe8c5f91b526d4c1a46a6387b956bf2d64744e

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
AlgorithmHash digest
SHA2561974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0
MD5cf781fd5412ffd826e0436883452cc17
BLAKE2b-256c3bc2b3545766337b95409868f8e62053135bdc7fa2ce630aba983a2aa60b559

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
AlgorithmHash digest
SHA2561cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7
MD5e94003c2b65d81b00203711c5c42fb8e
BLAKE2b-2562ad0bd5ad792e78017f5decfb2ecc947422a3669a34f775679a76317af671ffc

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp312-cp312-win_amd64.whl
AlgorithmHash digest
SHA2562aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146
MD5be21ccbf8931e92ba1fdb2dc1250bf2a
BLAKE2b-25646698c4f928741c2a8efa255fdc7e9097527c6dc4e4df147e3cadc5d9357ce85

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp312-cp312-win32.whl
AlgorithmHash digest
SHA25665ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00
MD5507e550a55b19dedf267b58a487ba0bc
BLAKE2b-2562b93df59a5a3897c1f036ae8ff845e45f4081bb06943039ae28a3c1c7c780f22

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
AlgorithmHash digest
SHA25611c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f
MD595f1a27d33106fa9f40ee0714681c840
BLAKE2b-256041ef8bb88f6157045dd5d9b27ccf433d016981032690969aa5c19e332b138c0

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
AlgorithmHash digest
SHA2567a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb
MD507b44109381985b48d1eef80feebc5ad
BLAKE2b-2568e21efd47800e4affc993e8be50c1b768de038363dd88865920439ef7b422c60

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
AlgorithmHash digest
SHA2564f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592
MD5bd23a12ead870759f264160ab38b2c9d
BLAKE2b-25602e2e2cbb8d634151aab9528ef7b8bab52ee4ab10e076509285602c2a3a686e0

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
AlgorithmHash digest
SHA256c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba
MD5c4452a5dc557c291904b5c51a4148237
BLAKE2b-2560eb254122b3c6df5df3e87582b2e9430f1bdb63af4023c739ba300164c9ae503

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
AlgorithmHash digest
SHA256f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee
MD57cb37fc9145d0ebbea5666b4f9ed1027
BLAKE2b-256623082116199d1c249446723c68f2c9da40d7f062551036f50b8c4caa42ae252

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
AlgorithmHash digest
SHA256bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24
MD5eb08f551bdd6772155bb39ac0da47479
BLAKE2b-25627f6dba8a258acbf9d2bed2525cdcbb9493ef9bae5199d7a9cb92ee7e9b2aea6

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
AlgorithmHash digest
SHA256dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854
MD5c524d1020b4652aacf4477d1628fa1ba
BLAKE2b-256246d9483566acfbda6c62c6bc74b6e981c777229d2af93c8eb2469b26ac1b7bc

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
AlgorithmHash digest
SHA256a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4
MD591121787f396d3e98210de8b617e5d48
BLAKE2b-256a230182db21d4f2a95904cec1a6f779479ea1ac07c0647f064dea454ec650c42

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp311-cp311-win_amd64.whl
AlgorithmHash digest
SHA256f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91
MD55b11fe8d26318d85e0bc577a654f6643
BLAKE2b-2568b7210c1d2d82101c468a28adc35de6c77b308f288cfd0b88e1070f15b98e00c

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp311-cp311-win32.whl
AlgorithmHash digest
SHA256ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09
MD533ff8081378188894097942f80c33e26
BLAKE2b-2565e05463c023a39bdeb9bb43a99e7dee2c664cb68d5bb87d14f92482b9f6011cc

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
AlgorithmHash digest
SHA256db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6
MD5afbc410fb9b42b19f4f7c81c21d6777f
BLAKE2b-256f0dc8569b5f25ff30484b555ad8a3f537e0225d091abec386c9420cf5f7a2976

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
AlgorithmHash digest
SHA256892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687
MD53603e683878b74f38e5617f04ff6a369
BLAKE2b-25622319b2ac8eee99e001eb6add9fa27514ef5e9faf176169057a12860af52704c

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
AlgorithmHash digest
SHA256f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5
MD5e36963a4c177157dc7b0775c309fa5a8
BLAKE2b-256c55cceefca458559f0ccc7a982319f37ed07b0d7b526964ae6cc61f8ad1b6119

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
AlgorithmHash digest
SHA2562fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1
MD5db9ae978afb76a4bf79df0657a66aaeb
BLAKE2b-256d5ee96457c943265de9fadeb3d2ffdbab003f7fba13d971084a9876affcda095

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
AlgorithmHash digest
SHA256cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880
MD5059788668d2c4e9aace4858e77c099ed
BLAKE2b-2565dfaaa7cd6be51419b894c5787a8a93c3302a1ed4f82d35beb0613ec15bdd0e2

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
AlgorithmHash digest
SHA256bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f
MD5889f3b507bab9272d9b549780840a642
BLAKE2b-2562b3ee7247c1d4f15086bb106c8d43c925b0b2ea20270224f5186fa48d4fb5cbd

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
AlgorithmHash digest
SHA2569eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4
MD5a886a9f3e80a60ce6ba95b431578bbca
BLAKE2b-256a20a1212befdbecab5d80eca3cde47d304cad986ad4eec7d85a42e0b6d2cc2ef

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
AlgorithmHash digest
SHA256e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4
MD5494f60d8e1c3500413bd093bb3f486ea
BLAKE2b-25616fb09e778ee3a8ea0d4dc8329cca0a9c9e65fed847d08e37eba74cb7ed4b252

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.2.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp310-cp310-win_amd64.whl
AlgorithmHash digest
SHA2560d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542
MD5e5cb2a5d14bccee316bb73173be125ec
BLAKE2b-25601e3cb04627bc2a1638948bc13e818df26495aa18e20d5be1ed95ab2b10b6847

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.2.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for numpy-2.2.4-cp310-cp310-win32.whl
AlgorithmHash digest
SHA256a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a
MD5e00bd3ac85d8f34b46b7f97a8278aeb3
BLAKE2b-2560dbd6a092963fb82e6c5aa0d0440635827bbb2910da229545473bbb58c537ed3

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
AlgorithmHash digest
SHA256df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017
MD5a5aff3a7eb2923878e67fbe1cd04a9e9
BLAKE2b-256b0b74472f603dd45ef36ff3d8e84e84fe02d9467c78f92cc121633dce6da307b

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
AlgorithmHash digest
SHA256218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3
MD5d857867787fe1eb236670e7fdb25f414
BLAKE2b-2561a973b1537776ad9a6d1a41813818343745e8dd928a2916d4c9edcd9a8af1dac

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
AlgorithmHash digest
SHA256adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020
MD5677b3031105e24eaee2e0e57d7c2a306
BLAKE2b-256c2072e5cc71193e3ef3a219ffcf6ca4858e46ea2be09c026ddd480d596b32867

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
AlgorithmHash digest
SHA2567716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2
MD55bdf5b63f4ee01fa808d13043b2a2275
BLAKE2b-2564c22fb1be710a14434c09080dd4a0acc08939f612ec02efcb04b9e210474782d

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
AlgorithmHash digest
SHA2564ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9
MD59982a91d7327aea541c24aff94d3e462
BLAKE2b-2567fa53d7094aa898f4fc5c84cdfb26beeae780352d43f5d8bdec966c4393d644c

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
AlgorithmHash digest
SHA256a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775
MD5826e52cd898567a0c446113ab7a7b362
BLAKE2b-256c7b92c4e96130b0b0f97b0ef4a06d6dae3b39d058b21a5e2fa2decd7fd6b1c8f

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
AlgorithmHash digest
SHA256e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae
MD5bf7fd01bb177885e920173b610c195d9
BLAKE2b-25679c2f50921beb8afd60ed9589ad880332cfefdb805422210d327fb48f12b7a81

See more details on using hashes here.

File details

Details for the filenumpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
AlgorithmHash digest
SHA2568146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9
MD5935928cbd2de140da097f6d5f4a01d72
BLAKE2b-2560489a79e86e5c1433926ed7d60cb267fb64aa578b6101ab645800fd43b4801de

See more details on using hashes here.

Supported by

AWSAWS Cloud computing and Security SponsorDatadogDatadog MonitoringFastlyFastly CDNGoogleGoogle Download AnalyticsPingdomPingdom MonitoringSentrySentry Error loggingStatusPageStatusPage Status page

[8]ページ先頭

©2009-2025 Movatter.jp