Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
PyPI

kafka-python 2.3.0

pip install kafka-python

Latest version

Released:

Pure Python client for Apache Kafka

Verified details

These details have beenverified by PyPI
Maintainers
Avatar for dpkp from gravatar.comdpkpAvatar for mumrah from gravatar.commumrah

Unverified details

These details havenot been verified by PyPI
Project links
Meta
  • License: Apache Software License
  • Author:Dana Powers
  • Tags apache kafka, kafka
  • Provides-Extra:crc32c,lz4,snappy,zstd,testing,benchmarks

Project description

https://img.shields.io/badge/kafka-4.0--0.8-brightgreen.svghttps://img.shields.io/pypi/pyversions/kafka-python.svghttps://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=githubhttps://img.shields.io/badge/license-Apache%202-blue.svghttps://img.shields.io/pypi/dw/kafka-python.svghttps://img.shields.io/pypi/v/kafka-python.svghttps://img.shields.io/pypi/implementation/kafka-python

Python client for the Apache Kafka distributed stream processing system.kafka-python is designed to function much like the official java client, with asprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.9+), but is backwards-compatible witholder versions (to 0.8.0). Some features will only be enabled on newer brokers.For example, fully coordinated consumer groups – i.e., dynamic partitionassignment to multiple consumers in the same group – requires use of 0.9+ kafkabrokers. Supporting this feature for earlier broker releases would requirewriting and maintaining custom leadership election and membership / healthcheck code (perhaps using zookeeper or consul). For older brokers, you canachieve something similar by manually assigning different partitions to eachconsumer instance with config management tools like chef, ansible, etc. Thisapproach will work fine, though it does not support rebalancing on failures.Seehttps://kafka-python.readthedocs.io/en/master/compatibility.htmlfor more details.

Please note that the master branch may contain unreleased features. For releasedocumentation, please see readthedocs and/or python’s inline help.

$pipinstallkafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarlyas possible to the official java client. Full support for coordinatedconsumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

Seehttps://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.htmlfor API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuplesthat expose basic message attributes: topic, partition, offset, key, and value:

fromkafkaimportKafkaConsumerconsumer=KafkaConsumer('my_favorite_topic')formsginconsumer:print(msg)
# join a consumer group for dynamic partition assignment and offset commitsfromkafkaimportKafkaConsumerconsumer=KafkaConsumer('my_favorite_topic',group_id='my_favorite_group')formsginconsumer:print(msg)
# manually assign the partition list for the consumerfromkafkaimportTopicPartitionconsumer=KafkaConsumer(bootstrap_servers='localhost:1234')consumer.assign([TopicPartition('foobar',2)])msg=next(consumer)
# Deserialize msgpack-encoded valuesconsumer=KafkaConsumer(value_deserializer=msgpack.loads)consumer.subscribe(['msgpackfoo'])formsginconsumer:assertisinstance(msg.value,dict)
# Access record headers. The returned value is a list of tuples# with str, bytes for key and valueformsginconsumer:print(msg.headers)
# Read only committed messages from transactional topicconsumer=KafkaConsumer(isolation_level='read_committed')consumer.subscribe(['txn_topic'])formsginconsumer:print(msg)
# Get consumer metricsmetrics=consumer.metrics()

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class isintended to operate as similarly as possible to the official java client.Seehttps://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.htmlfor more details.

fromkafkaimportKafkaProducerproducer=KafkaProducer(bootstrap_servers='localhost:1234')for_inrange(100):producer.send('foobar',b'some_message_bytes')
# Block until a single message is sent (or timeout)future=producer.send('foobar',b'another_message')result=future.get(timeout=60)
# Block until all pending messages are at least put on the network# NOTE: This does not guarantee delivery or success! It is really# only useful if you configure internal batching using linger_msproducer.flush()
# Use a key for hashed-partitioningproducer.send('foobar',key=b'foo',value=b'bar')
# Serialize json messagesimportjsonproducer=KafkaProducer(value_serializer=lambdav:json.dumps(v).encode('utf-8'))producer.send('fizzbuzz',{'foo':'bar'})
# Serialize string keysproducer=KafkaProducer(key_serializer=str.encode)producer.send('flipflap',key='ping',value=b'1234')
# Compress messagesproducer=KafkaProducer(compression_type='gzip')foriinrange(1000):producer.send('foobar',b'msg%d'%i)
# Use transactionsproducer=KafkaProducer(transactional_id='fizzbuzz')producer.init_transactions()producer.begin_transaction()future=producer.send('txn_topic',value=b'yes')future.get()# wait for successful produceproducer.commit_transaction()# commit the transactionproducer.begin_transaction()future=producer.send('txn_topic',value=b'no')future.get()# wait for successful produceproducer.abort_transaction()# abort the transaction
# Include record headers. The format is list of tuples with string key# and bytes value.producer.send('foobar',value=b'c29tZSB2YWx1ZQ==',headers=[('content-encoding',b'base64')])
# Get producer performance metricsmetrics=producer.metrics()

Thread safety

The KafkaProducer can be used across threads without issue, unlike theKafkaConsumer which cannot.

While it is possible to use the KafkaConsumer in a thread-local manner,multiprocessing is recommended.

Compression

kafka-python supports the following compression formats:

  • gzip

  • LZ4

  • Snappy

  • Zstandard (zstd)

gzip is supported natively, the others require installing additional libraries.Seehttps://kafka-python.readthedocs.io/en/master/install.html for more information.

Optimized CRC32 Validation

Kafka uses CRC32 checksums to validate messages. kafka-python includes a purepython implementation for compatibility. To improve performance for high-throughputapplications, kafka-python will usecrc32c for optimized native code if installed.Seehttps://kafka-python.readthedocs.io/en/master/install.html for installation instructions.Seehttps://pypi.org/project/crc32c/ for details on the underlying crc32c lib.

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layerfor interacting with kafka brokers via the python repl. This is useful fortesting, probing, and general experimentation. The protocol support isleveraged to enable a KafkaClient.check_version() method thatprobes a kafka broker and attempts to identify which version it is running(0.8.0 to 2.6+).

Project details

Verified details

These details have beenverified by PyPI
Maintainers
Avatar for dpkp from gravatar.comdpkpAvatar for mumrah from gravatar.commumrah

Unverified details

These details havenot been verified by PyPI
Project links
Meta
  • License: Apache Software License
  • Author:Dana Powers
  • Tags apache kafka, kafka
  • Provides-Extra:crc32c,lz4,snappy,zstd,testing,benchmarks

Release historyRelease notifications |RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more aboutinstalling packages.

Source Distribution

kafka_python-2.3.0.tar.gz (358.4 kBview details)

UploadedSource

Built Distribution

Filter files by name, interpreter, ABI, and platform.

If you're not sure about the file name format, learn more aboutwheel file names.

Copy a direct link to the current filters

kafka_python-2.3.0-py2.py3-none-any.whl (326.3 kBview details)

UploadedPython 2Python 3

File details

Details for the filekafka_python-2.3.0.tar.gz.

File metadata

  • Download URL:kafka_python-2.3.0.tar.gz
  • Upload date:
  • Size: 358.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.7.22

File hashes

Hashes for kafka_python-2.3.0.tar.gz
AlgorithmHash digest
SHA256de65b596d26b5c894f227c35c7d29a65cea8f8a1c4f0f2b4e3e2ea60d503acc8
MD5c0585f8919c82daef74b0fc98aef959b
BLAKE2b-256275cd3b6d93ed625d2cb0265e6fe0f507be544f6edde577c1b118f42566389bf

See more details on using hashes here.

File details

Details for the filekafka_python-2.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for kafka_python-2.3.0-py2.py3-none-any.whl
AlgorithmHash digest
SHA256831ba6dff28144d0f1145c874d391f3ebb3c2c3e940cc78d74e83f0183497c98
MD58b76b1f83247c92efb2845aa84a7f0a0
BLAKE2b-2564adb694fd552295ed091e7418d02b6268ee36092d4c93211136c448fe061fe32

See more details on using hashes here.

Supported by

AWS Cloud computing and Security SponsorDatadog MonitoringDepot Continuous IntegrationFastly CDNGoogle Download AnalyticsPingdom MonitoringSentry Error loggingStatusPage Status page

[8]ページ先頭

©2009-2025 Movatter.jp