An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus
- PMID:9973342
- PMCID: PMC93493
- DOI: 10.1128/JB.181.4.1163-1170.1999
An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus
Abstract
Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at 100 degreesC by the fermentation of peptides and carbohydrates to produce acetate, CO2, and H2, together with minor amounts of ethanol. The organism also generates H2S in the presence of elemental sulfur (S0). Cell extracts contained NADP-dependent alcohol dehydrogenase activity (0.2 to 0.5 U/mg) with ethanol as the substrate, the specific activity of which was comparable in cells grown with and without S0. The enzyme was purified by multistep column chromatography. It has a subunit molecular weight of 48,000 +/- 1,000, appears to be a homohexamer, and contains iron ( approximately 1.0 g-atom/subunit) and zinc ( approximately 1.0 g-atom/subunit) as determined by chemical analysis and plasma emission spectroscopy. Neither other metals nor acid-labile sulfur was detected. Analysis using electron paramagnetic resonance spectroscopy indicated that the iron was present as low-spin Fe(II). The enzyme is oxygen sensitive and has a half-life in air of about 1 h at 23 degreesC. It is stable under anaerobic conditions even at high temperature, with half-lives at 85 and 95 degreesC of 160 and 7 h, respectively. The optimum pH for ethanol oxidation was between 9. 4 and 10.2 (at 80 degreesC), and the apparent Kms (at 80 degreesC) for ethanol, acetaldehyde, NADP, and NAD were 29.4, 0.17, 0.071, and 20 mM, respectively. P. furiosus alcohol dehydrogenase utilizes a range of alcohols and aldehydes, including ethanol, 2-phenylethanol, tryptophol, 1,3-propanediol, acetaldehyde, phenylacetaldehyde, and methyl glyoxal. Kinetic analyses indicated a marked preference for catalyzing aldehyde reduction with NADPH as the electron donor. Accordingly, the proposed physiological role of this unusual alcohol dehydrogenase is in the production of alcohols. This reaction simultaneously disposes of excess reducing equivalents and removes toxic aldehydes, both of which are products of fermentation.
Figures





Similar articles
- Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur.Ma K, Adams MW.Ma K, et al.J Bacteriol. 1994 Nov;176(21):6509-17. doi: 10.1128/jb.176.21.6509-6517.1994.J Bacteriol. 1994.PMID:7961401Free PMC article.
- Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase.Ma K, Loessner H, Heider J, Johnson MK, Adams MW.Ma K, et al.J Bacteriol. 1995 Aug;177(16):4748-56. doi: 10.1128/jb.177.16.4748-4756.1995.J Bacteriol. 1995.PMID:7642502Free PMC article.
- Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family.Roy R, Mukund S, Schut GJ, Dunn DM, Weiss R, Adams MW.Roy R, et al.J Bacteriol. 1999 Feb;181(4):1171-80. doi: 10.1128/JB.181.4.1171-1180.1999.J Bacteriol. 1999.PMID:9973343Free PMC article.
- Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.Adams MW.Adams MW.FEMS Microbiol Rev. 1994 Oct;15(2-3):261-77. doi: 10.1111/j.1574-6976.1994.tb00139.x.FEMS Microbiol Rev. 1994.PMID:7946471Review.
- New insights into thermostable iron-containing/activated alcohol dehydrogenases from hyperthermophiles.Lin Y, Yin Y, Oger P, Gong Y, Zhou X, Bai Y, Zhang L.Lin Y, et al.Int J Biol Macromol. 2024 Aug;275(Pt 2):133707. doi: 10.1016/j.ijbiomac.2024.133707. Epub 2024 Jul 6.Int J Biol Macromol. 2024.PMID:38972651Review.
Cited by
- The electron transfer system of syntrophically grown Desulfovibrio vulgaris.Walker CB, He Z, Yang ZK, Ringbauer JA Jr, He Q, Zhou J, Voordouw G, Wall JD, Arkin AP, Hazen TC, Stolyar S, Stahl DA.Walker CB, et al.J Bacteriol. 2009 Sep;191(18):5793-801. doi: 10.1128/JB.00356-09. Epub 2009 Jul 6.J Bacteriol. 2009.PMID:19581361Free PMC article.
- Manipulating Fermentation Pathways in the Hyperthermophilic ArchaeonPyrococcus furiosus for Ethanol Production up to 95°C Driven by Carbon Monoxide Oxidation.Lipscomb GL, Crowley AT, Nguyen DMN, Keller MW, O'Quinn HC, Tanwee TNN, Vailionis JL, Zhang K, Zhang Y, Kelly RM, Adams MWW.Lipscomb GL, et al.Appl Environ Microbiol. 2023 Jun 28;89(6):e0001223. doi: 10.1128/aem.00012-23. Epub 2023 May 10.Appl Environ Microbiol. 2023.PMID:37162365Free PMC article.
- Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols.Wu X, Zhang C, Orita I, Imanaka T, Fukui T, Xing XH.Wu X, et al.Appl Environ Microbiol. 2013 Apr;79(7):2209-17. doi: 10.1128/AEM.03873-12. Epub 2013 Jan 25.Appl Environ Microbiol. 2013.PMID:23354700Free PMC article.
- The structure of an iron-containing alcohol dehydrogenase from a hyperthermophilic archaeon in two chemical states.Larson SB, Jones JA, McPherson A.Larson SB, et al.Acta Crystallogr F Struct Biol Commun. 2019 Apr 1;75(Pt 4):217-226. doi: 10.1107/S2053230X19001201. Epub 2019 Mar 13.Acta Crystallogr F Struct Biol Commun. 2019.PMID:30950821Free PMC article.
- Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily.Machielsen R, Uria AR, Kengen SW, van der Oost J.Machielsen R, et al.Appl Environ Microbiol. 2006 Jan;72(1):233-8. doi: 10.1128/AEM.72.1.233-238.2006.Appl Environ Microbiol. 2006.PMID:16391048Free PMC article.
References
- Adams M W W. Biochemical diversity among sulfur-dependent hyperthermophilic microorganisms. FEMS Microbiol Rev. 1994;15:267–277. - PubMed
- Ammendola S, Raia C A, Caruso C, Camardella L, D’Auria S, De Rosa M, Rossi M. Thermostable NAD-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Biochemistry. 1992;31:12514–12523. - PubMed
- Arciero D M, Orville A M, Lipscomb J D. 17O-water and nitric oxide binding by protocatechuate 4,5 dioxygenase and catechol 2,3 dioxygenase. J Biol Chem. 1985;260:14035–14044. - PubMed
- Bakshi E N, Tse P, Murray K S, Hanson G R, Scopes R K, Wedd A G. Iron-activated alcohol dehydrogenase from Zymomonas mobilis: spectroscopic and magnetic properties. J Am Chem Soc. 1989;189:8707–8713.
- Bennetzen J L, Hall B D. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J Biol Chem. 1982;257:3018–3025. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Medical