Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Silverchair Information Systems full text link Silverchair Information Systems Free PMC article
Full text links

Actions

.1999 Feb 15;27(4):1104-17.
doi: 10.1093/nar/27.4.1104.

DNA binding specificity and transactivation properties of SREBP-2 bound to multiple sites on the human apoA-II promoter

Affiliations

DNA binding specificity and transactivation properties of SREBP-2 bound to multiple sites on the human apoA-II promoter

H Y Kan et al. Nucleic Acids Res..

Abstract

DNase I footprinting of the apoA-II promoter using sterol regulatory element binding protein-2 [(SREBP-2 (1-458)] expressed in bacteria identified four protected regions, designated AIIAB (-64 to -48), AIICD (-178 to -154), AIIDE (-352 to -332) and AIIK (-760 to -743), which bind SREBP-2 and contain either palindromic or direct repeat motifs. Potassium permanganate and dimethyl sulfate interference experiments using the AIIAB region as probe showed that the nucleotides of a decameric palindromic repeat RTCAMVTGMY and two 5' T residues participate in DNA-protein interactions. SREBP-2 transactivated the intact (-911/+29) apoA-II promoter 1.7-fold and truncated apoA-II promoter segments which contain one, two or three SREBP-2 sites 11- to 17-fold in HepG2 cells. Transactivation of a promoter construct containing the binding site AIIAB and the apoA-II enhancer, which includes the binding site AIIK, was abolished by mutations in element AIIAB. An SREBP-2 mutant defective in DNA binding caused a dose-dependent repression of the apoA-II promoter activity. Repression was also caused by an SREBP-2 mutant which lacks the N-terminal activation domain (residues 1-93) but binds normally to its cognate sites. In contrast, a double SREBP-2 mutant which lacks both the DNA binding and the activation domains has no effect on the apoA-II promoter activity. Overall, the findings suggest that SREBP-2 can transactivate the apoA-II promoter by binding to multiple sites. Furthermore, the repression caused by the DNA binding deficient mutants results from squelching of positive activator(s) which appear to recognize the activation domain of SREBP-2.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Silverchair Information Systems full text link Silverchair Information Systems Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp