Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Review
.1998:12 ( Pt 3b):541-7.
doi: 10.1038/eye.1998.143.

Evolution of colour vision in vertebrates

Affiliations
Review

Evolution of colour vision in vertebrates

J K Bowmaker. Eye (Lond).1998.

Abstract

The expression of five major families of visual pigments occurred early in vertebrae evolution, probably about 350-400 million years ago, before the separation of the major vertebrate classes. Phylogenetic analysis of opsin gene sequences suggests that the ancestral pigments were cone pigments, with rod pigments evolving last. Modern teleosts, reptiles and birds have genera that possess rods and four spectral classes of cone each representing one of the five visual pigment families. The complement of four spectrally distinct cone classes endows these species with the potential for tetrachromatic colour vision. In contrast, probably because of their nocturnal ancestry, mammals have rod-dominated retinas with colour vision reduced to a basic dichromatic system subserved by only two spectral classes of cone. It is only within primates, about 35 millions years ago, that mammals 're-evolved' a higher level of colour vision: trichromacy. This was achieved by a gene duplication within the longer-wave cone class to produce two spectrally distinct members of the same visual pigment family which, in conjunction with a short-wavelength pigment, provide the three spectral classes of cone necessary to subserve trichromacy.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp