Recent developments in computer-assisted analysis of mixtures
- PMID:9660629
Recent developments in computer-assisted analysis of mixtures
Abstract
This paper reviews recent developments in the area of computer-assisted analysis of mixture distributions (C.A.MAN). Given a biometric situation of interest in which, under homogeneity assumptions, a certain parametric density occurs, such as the Poisson, the binomial, the geometric, the normal, and so forth, then it is argued that this situation can easily be enlarged to allow a variation of the scalar parameter in the population. This situation is called unobserved heterogeneity. This naturally leads to a specific form of nonparametric mixture distribution that can then be assumed to be the standard model in the biometric application of interest (since it also incorporates the homogeneous situations as a special case). Besides developments in theory and algorithms, the work focuses on developments in biometric applications such as meta-analysis, fertility studies, estimation of prevalence under clustering, and estimation of the distribution function of survival time under interval censoring. The approach is nonparametric for the mixing distribution, including leaving the number of components (subpopulations) of the mixing distribution unknown.
Comment in
- Computer-assisted analysis of mixtures.Douglas JB.Douglas JB.Biometrics. 2000 Mar;56(1):303.Biometrics. 2000.PMID:10783811No abstract available.
Similar articles
- Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.Böhning D, Kuhnert R.Böhning D, et al.Biometrics. 2006 Dec;62(4):1207-15. doi: 10.1111/j.1541-0420.2006.00565.x.Biometrics. 2006.PMID:17156296
- Computer-assisted analysis of mixtures (C.A.MAM): statistical algorithms.Böhning D, Schlattmann P, Lindsay B.Böhning D, et al.Biometrics. 1992 Mar;48(1):283-303.Biometrics. 1992.PMID:1581488
- Nonparametric methods for measurements below detection limit.Zhang D, Fan C, Zhang J, Zhang CH.Zhang D, et al.Stat Med. 2009 Feb 15;28(4):700-15. doi: 10.1002/sim.3488.Stat Med. 2009.PMID:19035469
- Statistical performance evaluation of biometric authentication systems using random effects models.Mitra S, Savvides M, Brockwell A.Mitra S, et al.IEEE Trans Pattern Anal Mach Intell. 2007 Apr;29(4):517-30. doi: 10.1109/TPAMI.2007.1000.IEEE Trans Pattern Anal Mach Intell. 2007.PMID:17299211Review.
- Applications of computer-intensive statistical methods to environmental research.Pitt DG, Kreutzweiser DP.Pitt DG, et al.Ecotoxicol Environ Saf. 1998 Feb;39(2):78-97. doi: 10.1006/eesa.1997.1619.Ecotoxicol Environ Saf. 1998.PMID:9515080Review.
Cited by
- Estimating the number of drug users in Bangkok 2001: a capture-recapture approach using repeated entries in one list.Böhning D, Suppawattanabodee B, Kusolvisitkul W, Viwatwongkasem C.Böhning D, et al.Eur J Epidemiol. 2004;19(12):1075-83. doi: 10.1007/s10654-004-3006-8.Eur J Epidemiol. 2004.PMID:15678786
- Meta-analysis of Diagnostic Accuracy and ROC Curves with Covariate Adjusted Semiparametric Mixtures.Doebler P, Holling H.Doebler P, et al.Psychometrika. 2015 Dec;80(4):1084-104. doi: 10.1007/s11336-014-9430-0. Epub 2014 Nov 1.Psychometrika. 2015.PMID:25361619
- Evolution of protein domain promiscuity in eukaryotes.Basu MK, Carmel L, Rogozin IB, Koonin EV.Basu MK, et al.Genome Res. 2008 Mar;18(3):449-61. doi: 10.1101/gr.6943508. Epub 2008 Jan 29.Genome Res. 2008.PMID:18230802Free PMC article.
- Mapping DNA polymerase errors by single-molecule sequencing.Lee DF, Lu J, Chang S, Loparo JJ, Xie XS.Lee DF, et al.Nucleic Acids Res. 2016 Jul 27;44(13):e118. doi: 10.1093/nar/gkw436. Epub 2016 May 16.Nucleic Acids Res. 2016.PMID:27185891Free PMC article.
- Domain Architecture Based Methods for Comparative Functional Genomics Toward Therapeutic Drug Target Discovery.Gollapalli P, Rudrappa S, Kumar V, Santosh Kumar HS.Gollapalli P, et al.J Mol Evol. 2023 Oct;91(5):598-615. doi: 10.1007/s00239-023-10129-w. Epub 2023 Aug 25.J Mol Evol. 2023.PMID:37626222Review.