Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
- PMID:9572962
- PMCID: PMC106241
- DOI: 10.1128/AEM.64.5.1852-1859.1998
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
Abstract
Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously.
Figures





Similar articles
- Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.Ho NW, Chen Z, Brainard AP, Sedlak M.Ho NW, et al.Adv Biochem Eng Biotechnol. 1999;65:163-92. doi: 10.1007/3-540-49194-5_7.Adv Biochem Eng Biotechnol. 1999.PMID:10533435Review.
- Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose.Sedlak M, Ho NW.Sedlak M, et al.Appl Biochem Biotechnol. 2004 Spring;113-116:403-16. doi: 10.1385/abab:114:1-3:403.Appl Biochem Biotechnol. 2004.PMID:15054267
- Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.Matsushika A, Sawayama S.Matsushika A, et al.Enzyme Microb Technol. 2011 May 6;48(6-7):466-71. doi: 10.1016/j.enzmictec.2011.02.002. Epub 2011 Mar 2.Enzyme Microb Technol. 2011.PMID:22113018
- Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note.Deng XX, Ho NW.Deng XX, et al.Appl Biochem Biotechnol. 1990 Spring-Summer;24-25:193-9. doi: 10.1007/BF02920245.Appl Biochem Biotechnol. 1990.PMID:2162148
- Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.Kim SR, Park YC, Jin YS, Seo JH.Kim SR, et al.Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21.Biotechnol Adv. 2013.PMID:23524005Review.
Cited by
- Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24.Hector RE, Dien BS, Cotta MA, Mertens JA.Hector RE, et al.Biotechnol Biofuels. 2013 May 30;6(1):84. doi: 10.1186/1754-6834-6-84.Biotechnol Biofuels. 2013.PMID:23721368Free PMC article.
- Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion.Nieves LM, Panyon LA, Wang X.Nieves LM, et al.Front Bioeng Biotechnol. 2015 Feb 18;3:17. doi: 10.3389/fbioe.2015.00017. eCollection 2015.Front Bioeng Biotechnol. 2015.PMID:25741507Free PMC article.Review.
- Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10.Manow R, Wang J, Wang Y, Zhao J, Garza E, Iverson A, Finan C, Grayburn S, Zhou S.Manow R, et al.J Ind Microbiol Biotechnol. 2012 Jul;39(7):977-85. doi: 10.1007/s10295-012-1100-6. Epub 2012 Feb 29.J Ind Microbiol Biotechnol. 2012.PMID:22374228
- Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B.Johansson B, et al.Appl Environ Microbiol. 2001 Sep;67(9):4249-55. doi: 10.1128/AEM.67.9.4249-4255.2001.Appl Environ Microbiol. 2001.PMID:11526030Free PMC article.
- Microbial cellulose utilization: fundamentals and biotechnology.Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS.Lynd LR, et al.Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents. doi: 10.1128/MMBR.66.3.506-577.2002.Microbiol Mol Biol Rev. 2002.PMID:12209002Free PMC article.Review.
References
- Ammerer G. Expression of genes in yeast using the ADC1 promoter. Methods Enzymol. 1983;101:192–201. - PubMed
- Armstrong K A, Som T, Volkert F C, Rose A, Broach J R. Propagation and expression of genes in yeast using 2-micron circle vectors. In: Barr P J, Brake A J, Valenzuela P, editors. Yeast genetic engineering. Boston, Mass: Butterworths; 1989. pp. 165–192. - PubMed
- Becker D, Guarente L. High efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–186. - PubMed
- Bennetzen J L, Hall B D. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J Biol Chem. 1982;257:3018–3025. - PubMed
- Bolen P L, Detroy R W. Induction of NADPH-linked d-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by d-xylose, l-arabinose, or d-galactose. Biotechnol Bioeng. 1985;27:302–307. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous