Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.1997 Nov 28;107(3):131-44.
doi: 10.1016/s0009-2797(97)00087-2.

Arsenic and antimony: comparative approach on mechanistic toxicology

Affiliations
Review

Arsenic and antimony: comparative approach on mechanistic toxicology

T Gebel. Chem Biol Interact..

Abstract

A chemico-toxicological similarity between arsenic and antimony exists and their toxicology is often seen. Indeed, both elements possess several common properties, e.g. they are clastogenic but not mutagenic in the trivalent state and they have a carcinogenic potential: trivalent arsenicals are known to be human carcinogens and antimony(III) oxide (by inhalation) has been shown to cause lung cancer in female rats. For years, arsenic has been known to be environmentally toxic. Elevated human exposure to this element, mostly caused by the intake of contaminated tap water, is associated with increased incidences of cancer at various sites. It is still not clear how arsenic compounds exert their genotoxic effect. It may be connected with an inhibition of DNA repair or the induction of oxidative stress. Little work has been done on the toxicology of antimony as it is less widely present in the environment. There is evidence that in mammals antimony, unlike arsenic, is not detoxified via methylation but it still remains unclear what mechanism is responsible for antimony's genotoxicity. In general, there is little information known about this element to accurately determine its impact on human health. Thus, the aim of this paper is to review current knowledge for future risk assessment and further scientific work.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp