Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.1997 Jun 13;272(24):15562-8.
doi: 10.1074/jbc.272.24.15562.

Proteolytic activation of cholera toxin and Escherichia coli labile toxin by entry into host epithelial cells. Signal transduction by a protease-resistant toxin variant

Affiliations
Free article

Proteolytic activation of cholera toxin and Escherichia coli labile toxin by entry into host epithelial cells. Signal transduction by a protease-resistant toxin variant

W I Lencer et al. J Biol Chem..
Free article

Abstract

Cholera and Escherichia coli heat-labile toxins (CT and LT) require proteolysis of a peptide loop connecting two major domains of their enzymatic A subunits for maximal activity (termed "nicking"). To test whether host intestinal epithelial cells may supply the necessary protease, recombinant rCT and rLT and a protease-resistant mutant CTR192H were prepared. Toxin action was assessed as a Cl- secretory response (Isc) elicited from monolayers of polarized human epithelial T84 cells. When applied to apical cell surfaces, wild type toxins elicited a brisk increase in Isc (80 microA/cm2). Isc was reduced 2-fold, however, when toxins were applied to basolateral membranes. Pretreatment of wild type toxins with trypsin in vitro restored the "basolateral" secretory responses to "apical" levels. Toxin entry into T84 cells via apical but not basolateral membranes led to nicking of the A subunit by a serine-type protease. T84 cells, however, did not nick CTR192H, and the secretory response elicited by CTR192H remained attenuated even when applied to apical membranes. Thus, T84 cells express a serine-type protease(s) fully sufficient for activating the A subunits of CT and LT. The protease, however, is only accessible for activation when the toxin enters the cell via the apical membrane.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp