Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Comparative Study
.1996 Oct 14;227(2):311-7.
doi: 10.1006/bbrc.1996.1506.

Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase

Affiliations
Comparative Study

Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase

A H Ullah et al. Biochem Biophys Res Commun..

Abstract

The function of disulfide bonds in Aspergillus ficuum phytase was elucidated by unfolding studies, using guanidinium hydrochloride (Gu.HCl) as denaturant. Although the enzyme is totally inactivated by 0.8 M Gu.HCl, at pH 5.0, the active conformation is instantaneously restored by 0.6 M Gu.HCl, at pH 5.0. Conditions which would permit refolding of phytase are completely negated by 10 mM beta-mercaptoethanol and causes its catalytic demise at pH 7.5. Assay of free thiols using Ellman's reagent indicates that none of the thiols in the ten cysteines in phytase are free; five disulfide bonds were predicted for the enzyme. Sequence comparison of mold phytases and yeast acid phosphatases indicates four conserved cysteines. Thus, disulfide bonds play an important role in the folding of fungal phytase; any perturbation of the process of its formation causes an altered three-dimensional structure that is inconsistent with catalytic activity.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp