Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase
- PMID:8878514
- DOI: 10.1006/bbrc.1996.1506
Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase
Abstract
The function of disulfide bonds in Aspergillus ficuum phytase was elucidated by unfolding studies, using guanidinium hydrochloride (Gu.HCl) as denaturant. Although the enzyme is totally inactivated by 0.8 M Gu.HCl, at pH 5.0, the active conformation is instantaneously restored by 0.6 M Gu.HCl, at pH 5.0. Conditions which would permit refolding of phytase are completely negated by 10 mM beta-mercaptoethanol and causes its catalytic demise at pH 7.5. Assay of free thiols using Ellman's reagent indicates that none of the thiols in the ten cysteines in phytase are free; five disulfide bonds were predicted for the enzyme. Sequence comparison of mold phytases and yeast acid phosphatases indicates four conserved cysteines. Thus, disulfide bonds play an important role in the folding of fungal phytase; any perturbation of the process of its formation causes an altered three-dimensional structure that is inconsistent with catalytic activity.
Similar articles
- Monitoring of unfolding and refolding in fungal phytase (phyA) by dynamic light scattering.Ullah AH, Sethumadhavan K, Mullaney EJ.Ullah AH, et al.Biochem Biophys Res Commun. 2005 Feb 25;327(4):993-8. doi: 10.1016/j.bbrc.2004.12.111.Biochem Biophys Res Commun. 2005.PMID:15652493
- The role of disulfide bonds in the conformational stability and catalytic activity of phytase.Wang XY, Meng FG, Zhou HM.Wang XY, et al.Biochem Cell Biol. 2004 Apr;82(2):329-34. doi: 10.1139/o03-082.Biochem Cell Biol. 2004.PMID:15060628
- Differences in the active site environment of Aspergillus ficuum phytases.Ullah AH, Sethumadhavan K.Ullah AH, et al.Biochem Biophys Res Commun. 1998 Feb 13;243(2):458-62. doi: 10.1006/bbrc.1998.8117.Biochem Biophys Res Commun. 1998.PMID:9480830
- Conservation of cysteine residues in fungal histidine acid phytases.Mullaney EJ, Ullah AH.Mullaney EJ, et al.Biochem Biophys Res Commun. 2005 Mar 11;328(2):404-8. doi: 10.1016/j.bbrc.2004.12.181.Biochem Biophys Res Commun. 2005.PMID:15694362
- Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure.Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, van Loon AP, Pasamontes L.Tomschy A, et al.Protein Sci. 2000 Jul;9(7):1304-11. doi: 10.1110/ps.9.7.1304.Protein Sci. 2000.PMID:10933495Free PMC article.
Cited by
- Cloning, Sequencing, and In Silico Analysis of β-Propeller Phytase Bacillus licheniformis Strain PB-13.Kumar V, Singh G, Sangwan P, Verma AK, Agrawal S.Kumar V, et al.Biotechnol Res Int. 2014;2014:841353. doi: 10.1155/2014/841353. Epub 2014 Apr 24.Biotechnol Res Int. 2014.PMID:24864215Free PMC article.
- Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus.Berka RM, Rey MW, Brown KM, Byun T, Klotz AV.Berka RM, et al.Appl Environ Microbiol. 1998 Nov;64(11):4423-7. doi: 10.1128/AEM.64.11.4423-4427.1998.Appl Environ Microbiol. 1998.PMID:9797301Free PMC article.
- Phytase: sources, preparation and exploitation.Dvoráková J.Dvoráková J.Folia Microbiol (Praha). 1998;43(4):323-38. doi: 10.1007/BF02818571.Folia Microbiol (Praha). 1998.PMID:9821286Review.
- Atomistic details of effect of disulfide bond reduction on active site of Phytase B from Aspergillus niger: A MD Study.Kumar K, Dixit M, Khire J, Pal S.Kumar K, et al.Bioinformation. 2013 Dec 6;9(19):963-7. doi: 10.6026/97320630009963. eCollection 2013.Bioinformation. 2013.PMID:24391358Free PMC article.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources