Estimate of the genomic mutation rate deleterious to overall fitness in E. coli
- PMID:8649513
- DOI: 10.1038/381694a0
Estimate of the genomic mutation rate deleterious to overall fitness in E. coli
Abstract
Mutations are a double-edged sword: they are the ultimate source of genetic variation upon which evolution depends, yet most mutations affecting fitness (viability and reproductive success) appear to be harmful. Deleterious mutations of small effect can escape natural selection, and should accumulate in small population. Reduced fitness from deleterious-mutation accumulation may be important in the evolution of sex, mate choice, and diploid life-cycles, and in the extinction of small populations. Few empirical data exist, however. Minimum estimates of the genomic deleterious-mutation rate for viability in Drosophila melanogaster are surprisingly high, leading to the conjecture that the rate for total fitness could exceed 1.0 mutation per individual per generation. Here we use Escherichia coli to provide an estimate of the genomic deleterious-mutation rate for total fitness in a microbe. We estimate that the per-microbe rate of deleterious mutations is in excess of 0.0002.
Similar articles
- The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster.García-Dorado A, Monedero JL, López-Fanjul C.García-Dorado A, et al.Genetica. 1998;102-103(1-6):255-65.Genetica. 1998.PMID:9720284
- Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila.Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Houle D, Charlesworth B, Keightley PD.Haag-Liautard C, et al.Nature. 2007 Jan 4;445(7123):82-5. doi: 10.1038/nature05388.Nature. 2007.PMID:17203060
- The genomic mutation rate for fitness in Drosophila.Houle D, Hoffmaster DK, Assimacopoulos S, Charlesworth B.Houle D, et al.Nature. 1992 Sep 3;359(6390):58-60. doi: 10.1038/359058a0.Nature. 1992.PMID:1522887
- The evolution of mutation rates: separating causes from consequences.Sniegowski PD, Gerrish PJ, Johnson T, Shaver A.Sniegowski PD, et al.Bioessays. 2000 Dec;22(12):1057-66. doi: 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W.Bioessays. 2000.PMID:11084621Review.
- Measuring spontaneous deleterious mutation process.Kondrashov AS.Kondrashov AS.Genetica. 1998;102-103(1-6):183-97.Genetica. 1998.PMID:9720279Review.
Cited by
- Consequences of mutation accumulation for growth performance are more likely to be resource-dependent at higher temperatures.Chu XL, Zhang QG.Chu XL, et al.BMC Ecol Evol. 2021 Jun 6;21(1):109. doi: 10.1186/s12862-021-01846-1.BMC Ecol Evol. 2021.PMID:34092227Free PMC article.
- Variable mutation rates as an adaptive strategy in replicator populations.Stich M, Manrubia SC, Lázaro E.Stich M, et al.PLoS One. 2010 Jun 17;5(6):e11186. doi: 10.1371/journal.pone.0011186.PLoS One. 2010.PMID:20567506Free PMC article.
- Analysis of epistatic interactions and fitness landscapes using a new geometric approach.Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE.Beerenwinkel N, et al.BMC Evol Biol. 2007 Apr 13;7:60. doi: 10.1186/1471-2148-7-60.BMC Evol Biol. 2007.PMID:17433106Free PMC article.
- Frequent beneficial mutations during single-colony serial transfer of Streptococcus pneumoniae.Stevens KE, Sebert ME.Stevens KE, et al.PLoS Genet. 2011 Aug;7(8):e1002232. doi: 10.1371/journal.pgen.1002232. Epub 2011 Aug 18.PLoS Genet. 2011.PMID:21876679Free PMC article.
- Reversions mask the contribution of adaptive evolution in microbiomes.Torrillo PA, Lieberman TD.Torrillo PA, et al.bioRxiv [Preprint]. 2024 Jun 18:2023.09.14.557751. doi: 10.1101/2023.09.14.557751.bioRxiv. 2024.Update in:Elife. 2024 Sep 06;13:e93146. doi: 10.7554/eLife.93146.PMID:37745437Free PMC article.Updated.Preprint.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources