Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.1996 Jun 20;381(6584):694-6.
doi: 10.1038/381694a0.

Estimate of the genomic mutation rate deleterious to overall fitness in E. coli

Affiliations

Estimate of the genomic mutation rate deleterious to overall fitness in E. coli

T T Kibota et al. Nature..

Abstract

Mutations are a double-edged sword: they are the ultimate source of genetic variation upon which evolution depends, yet most mutations affecting fitness (viability and reproductive success) appear to be harmful. Deleterious mutations of small effect can escape natural selection, and should accumulate in small population. Reduced fitness from deleterious-mutation accumulation may be important in the evolution of sex, mate choice, and diploid life-cycles, and in the extinction of small populations. Few empirical data exist, however. Minimum estimates of the genomic deleterious-mutation rate for viability in Drosophila melanogaster are surprisingly high, leading to the conjecture that the rate for total fitness could exceed 1.0 mutation per individual per generation. Here we use Escherichia coli to provide an estimate of the genomic deleterious-mutation rate for total fitness in a microbe. We estimate that the per-microbe rate of deleterious mutations is in excess of 0.0002.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Related information

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp