Improved noninvasive diagnostic testing for malignant hyperthermia susceptibility from a combination of metabolites determined in vivo with 31P-magnetic resonance spectroscopy
- PMID:8489056
- DOI: 10.1097/00000542-199305000-00007
Improved noninvasive diagnostic testing for malignant hyperthermia susceptibility from a combination of metabolites determined in vivo with 31P-magnetic resonance spectroscopy
Abstract
Background: Phosphorus magnetic resonance spectroscopy (31P-MRS) in vivo has been suggested recently as a possible noninvasive diagnostic test in malignant hyperthermia (MH) susceptibility. However, differences between protocols and also within subjects may have led to inconsistent MRS abnormalities reported during and after exercise. The aim of the current study was to detect discriminant abnormalities in the leg muscles using in vivo 31P-MRS during the rest period.
Methods: Fourteen patients shown to be MH-susceptible and 22 patients MH-negative on the basis of in vitro caffeine/halothane contracture tests according to the European MH group protocol were compared to 36 control subjects using in vivo 31P-MRS during the rest period. A score of MRS combined abnormalities was calculated from a stepwise discriminant function analysis.
Results: The MH-susceptible group had a significantly (P < 0.01) higher inorganic phosphate (Pi) to phosphocreatine (PCr) (Pi/PCr) value (0.134 +/- 0.022) than either the MH-negative (0.097 +/- 0.016) or the control (0.101 +/- 0.017) group. The MH-susceptible group also exhibited a significantly (P < 0.01) higher phosphodiesters (PDE) to PCr (PDE/PCr) value (0.093 +/- 0.056) than either the MH-negative (0.034 +/- 0.021) or the control (0.029 +/- 0.019) group. Combining both MRS parameters, 13 of the 14 MH-susceptible patients demonstrated abnormal MRS test results (score value < 1.65). Conversely, 21 of the 22 MH-negative patients had normal MRS results (score value > or = 1.65). The sensitivity and specificity of this threshold value were 93 and 95%, respectively.
Conclusions: This study confirms that 31P-MRS could be useful for distinguishing noninvasively between MH-susceptible and MH-negative patients if several MRS parameter are combined. Moreover, the present MRS approach appears to be more reliable and easier than that used during exercise.
Similar articles
- A blinded comparison of noninvasive, in vivo phosphorus nuclear magnetic resonance spectroscopy and the in vitro halothane/caffeine contracture test in the evaluation of malignant hyperthermia susceptibility.Olgin J, Rosenberg H, Allen G, Seestedt R, Chance B.Olgin J, et al.Anesth Analg. 1991 Jan;72(1):36-47. doi: 10.1213/00000539-199101000-00007.Anesth Analg. 1991.PMID:1984374Clinical Trial.
- [Prospective evaluation of a nuclear magnetic resonance score in the screening of malignant hyperthermia susceptibility. Initial results].Payen JF, Bosson JL, Stieglitz P.Payen JF, et al.Ann Fr Anesth Reanim. 1996;15(1):47-48. doi: 10.1016/0750-7658(96)89402-0.Ann Fr Anesth Reanim. 1996.PMID:8729310French.
- Non-invasive evaluation of malignant hyperthermia susceptibility with phosphorus nuclear magnetic resonance spectroscopy.Olgin J, Argov Z, Rosenberg H, Tuchler M, Chance B.Olgin J, et al.Anesthesiology. 1988 Apr;68(4):507-13. doi: 10.1097/00000542-198804000-00006.Anesthesiology. 1988.PMID:3354887
- [Screening tests for malignant hyperthermia susceptibility].Krivosic-Horber R, Adnet P.Krivosic-Horber R, et al.Ann Fr Anesth Reanim. 1989;8(5):444-56. doi: 10.1016/S0750-7658(89)80011-5.Ann Fr Anesth Reanim. 1989.PMID:2560612Review.French.
- King-Denborough syndrome: contracture testing and literature review.Heiman-Patterson TD, Rosenberg HR, Binning CP, Tahmoush AJ.Heiman-Patterson TD, et al.Pediatr Neurol. 1986 May-Jun;2(3):175-7. doi: 10.1016/0887-8994(86)90013-5.Pediatr Neurol. 1986.PMID:2907859Review.
Cited by
- Basal bioenergetic abnormalities in skeletal muscle from ryanodine receptor malignant hyperthermia-susceptible R163C knock-in mice.Giulivi C, Ross-Inta C, Omanska-Klusek A, Napoli E, Sakaguchi D, Barrientos G, Allen PD, Pessah IN.Giulivi C, et al.J Biol Chem. 2011 Jan 7;286(1):99-113. doi: 10.1074/jbc.M110.153247. Epub 2010 Oct 26.J Biol Chem. 2011.PMID:20978128Free PMC article.
- Malignant Hyperthermia.Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R.Kaur H, et al.Mo Med. 2019 Mar-Apr;116(2):154-159.Mo Med. 2019.PMID:31040503Free PMC article.Review.
- Malignant hyperthermia: a review.Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K.Rosenberg H, et al.Orphanet J Rare Dis. 2015 Aug 4;10:93. doi: 10.1186/s13023-015-0310-1.Orphanet J Rare Dis. 2015.PMID:26238698Free PMC article.Review.
- The current status of malignant hyperthermia.Yang L, Tautz T, Zhang S, Fomina A, Liu H.Yang L, et al.J Biomed Res. 2019 May 30;34(2):75-85. doi: 10.7555/JBR.33.20180089.J Biomed Res. 2019.PMID:32305961Free PMC article.
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous