Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.1993 Jan 15;1161(1):19-27.
doi: 10.1016/0167-4838(93)90190-3.

Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus

Affiliations

Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus

J M Blamey et al. Biochim Biophys Acta..

Abstract

Pyrococcus furiosus grows optimally at 100 degrees C by carbohydrate fermentation. It is thought to contain a novel tungsten-dependent, NAD(P)-independent glycolytic pathway in which one of the oxidation steps is catalyzed by a tungsten-containing aldehyde ferredoxin oxidoreductase. The enzyme that catalyzes the terminal oxidation step, pyruvate ferredoxin oxidoreductase (POR), has now been purified. POR has a molecular mass of 100 kDa and is comprised of three subunits (45, 31 and 24 kDa). It lacks tungsten but contains thiamine pyrophosphate (TPP) and two ferredoxin-type [4Fe-4S] clusters per molecule which, by EPR spectroscopy, can be differentiated by their relaxation properties. The enzyme requires CoASH but not TPP for pyruvate oxidation activity and will not use 2-oxoglutarate, phenyl pyruvate or indole pyruvate as substrates. POR is virtually inactive at 25 degrees C and shows a temperature optimum for pyruvate oxidation above 90 degrees C. The apparent Km values for pyruvate, CoASH and P. furiosus ferredoxin at 80 degrees C are 460, 100 and 70 microM, respectively. Carbon monoxide was a potent inhibitor of pyruvate oxidation (apparent Ki = 7 microM). The half-life of activity (t50%) in air at 25 degrees C was 15 min and the t50% value at 80 degrees C (under anaerobic conditions) was 23 min. Based on molecular comparisons with PORs from mesophilic organisms, it is proposed that P. furiosus POR may represent an ancestral form of a pyruvate-oxidizing enzyme.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp