Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

Share

Comparative Study
.1994;13(1):5-26.
doi: 10.1300/J069v13n01_02.

Utilization of plasma and urine methadone concentrations to optimize treatment in maintenance clinics: I. Measurement techniques for a clinical setting

Comparative Study

Utilization of plasma and urine methadone concentrations to optimize treatment in maintenance clinics: I. Measurement techniques for a clinical setting

M J Kell. J Addict Dis.1994.

Abstract

One difficulty for methadone maintenance treatment programs is the absence of a simple, analytical method useful for guiding adjustment of methadone dose. Currently, dose adjustment decisions are based upon: documentation of continuing opioid use by qualitative urine drug screens, patient complaints of dose not holding or physiological evidence of opioid withdrawal. Although decisions utilizing clinical parameters are helpful in adjustment of dose, a sizeable number of patients continue to receive inadequate doses. Incorrectly, many clinicians assume that low doses prevent toxicity and favor eventual abstinence. One solution to the question of efficacious dose adjustment would be utilization of repetitive blood sampling for monitoring plasma methadone concentrations to insure they remain within established therapeutic windows. Unfortunately, it is impractical to obtain ongoing blood samples from these patients because of poor venous access and the unpleasantness of frequent phlebotomy. To circumvent these problems, we developed analytical methods useful for estimating plasma methadone concentrations from random, spot urine samples. Over the past several years, we have analyzed approximately 16,000 samples (urine plus plasma) drawn from 200 methadone maintenance patients. These data have allowed generation of methadone dose vs. plasma methadone concentration curves, demonstrating why dose adjustment decisions should be buttressed with objective laboratory data. In addition, these methods are useful for uncovering covert methadone supplementation and diversion. These improvements in clinical care have been accomplished using a computerized, pharmacokinetics program which accounts for compounding effects of urine pH, specific gravity, volume of distribution and gender upon renal methadone excretion. The program allows calculation of total plasma methadone concentrations from concurrent urine measurements, which are within 5-10% of actually measured values. This system has eliminated the need for venous blood sampling, resulted in optimization of patient doses and helped uncover supplementing or diverting of methadone.

PubMed Disclaimer

Comment in

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp