Evolutionary relationships of bacterial and archaeal glutamine synthetase genes
- PMID:7916055
- DOI: 10.1007/BF00175876
Evolutionary relationships of bacterial and archaeal glutamine synthetase genes
Abstract
Glutamine synthetase (GS), an essential enzyme in ammonia assimilation and glutamine biosynthesis, has three distinctive types: GSI, GSII and GSIII. Genes for GSI have been found only in bacteria (eubacteria) and archaea (archaebacteria), while GSII genes only occur in eukaryotes and a few soil-dwelling bacteria. GSIII genes have been found in only a few bacterial species. Recently, it has been suggested that several lateral gene transfers of archaeal GSI genes to bacteria may have occurred. In order to study the evolution of GS, we cloned and sequenced GSI genes from two divergent archaeal species: the extreme thermophile Pyrococcus furiosus and the extreme halophile Haloferax volcanii. Our phylogenetic analysis, which included most available GS sequences, revealed two significant prokaryotic GSI subdivisions: GSI-alpha and GSI-beta. GSI-alpha-genes are found in the thermophilic bacterium, Thermotoga maritima, the low G+C Gram-positive bacteria, and the Euryarchaeota (includes methanogens, halophiles, and some thermophiles). GSI-beta-type genes occur in all other bacteria. GSI-alpha- and GSI-beta-type genes also differ with respect to a specific 25-amino-acid insertion and adenylylation control of GS enzyme activity, both absent in the former but present in the latter. Cyanobacterial genes lack adenylylation regulation of GS and may have secondarily lost it. The GSI gene of Sulfolobus solfataricus, a member of the Crenarchaeota (extreme thermophiles), is exceptional and could not be definitely placed in either subdivision.
Similar articles
- Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences.Tiboni O, Cammarano P, Sanangelantoni AM.Tiboni O, et al.J Bacteriol. 1993 May;175(10):2961-9. doi: 10.1128/jb.175.10.2961-2969.1993.J Bacteriol. 1993.PMID:8098326Free PMC article.
- Glutamine synthetase gene evolution in bacteria.Pesole G, Gissi C, Lanave C, Saccone C.Pesole G, et al.Mol Biol Evol. 1995 Mar;12(2):189-97. doi: 10.1093/oxfordjournals.molbev.a040197.Mol Biol Evol. 1995.PMID:7700148
- Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.Robertson DL, Tartar A.Robertson DL, et al.Mol Biol Evol. 2006 May;23(5):1048-55. doi: 10.1093/molbev/msj110. Epub 2006 Feb 22.Mol Biol Evol. 2006.PMID:16495348
- Molecular genetics of the glutamine synthetases in Rhizobium species.Espín G, Moreno S, Guzman J.Espín G, et al.Crit Rev Microbiol. 1994;20(2):117-23. doi: 10.3109/10408419409113551.Crit Rev Microbiol. 1994.PMID:7915906Review.
- Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups.Woods DR, Reid SJ.Woods DR, et al.FEMS Microbiol Rev. 1993 Aug;11(4):273-83. doi: 10.1111/j.1574-6976.1993.tb00001.x.FEMS Microbiol Rev. 1993.PMID:7691113Review.
Cited by
- Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum.Qiu C, Hong Y, Cao Y, Wang F, Fu Z, Shi Y, Wei M, Liu S, Lin J.Qiu C, et al.Parasitol Res. 2012 Dec;111(6):2367-76. doi: 10.1007/s00436-012-3092-6. Epub 2012 Sep 26.Parasitol Res. 2012.PMID:23011789
- Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement.Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA.Ghosh S, et al.Nat Commun. 2023 Jul 14;14(1):4216. doi: 10.1038/s41467-023-39670-4.Nat Commun. 2023.PMID:37452051Free PMC article.
- Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria.Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA.Travis BA, et al.Nat Commun. 2022 Jul 1;13(1):3793. doi: 10.1038/s41467-022-31573-0.Nat Commun. 2022.PMID:35778410Free PMC article.
- The presence of a dnaK (HSP70) multigene family in members of the orders Planctomycetales and Verrucomicrobiales.Ward-Rainey N, Rainey FA, Stackebrandt E.Ward-Rainey N, et al.J Bacteriol. 1997 Oct;179(20):6360-6. doi: 10.1128/jb.179.20.6360-6366.1997.J Bacteriol. 1997.PMID:9335284Free PMC article.
- Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from the hyperthermophilic bacterium Aquifex pyrophilus: phylogenetic depth of hyperthermophilic bacteria inferred from analysis of the EF-G/fus sequences.Bocchetta M, Ceccarelli E, Creti R, Sanangelantoni AM, Tiboni O, Cammarano P.Bocchetta M, et al.J Mol Evol. 1995 Dec;41(6):803-12. doi: 10.1007/BF00173160.J Mol Evol. 1995.PMID:8587125
References
Publication types
MeSH terms
Substances
Associated data
- Actions
Related information
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases